C Reg. No. :												
--------------	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code: U2205

B.E./B.Tech. DEGREE EXAMINATION, NOV 2022

Second Semester

		Computer Science	ce and Engineering	5		
		21UCS205- D	igital Electronics			
		(Regulat	tions 2021)			
Dur	ation: Three hou	ırs		Maximun	n: 100 Marks	
		Answer A	all Questions			
		PART A - (5	5x 1 = 5 Marks			
1.	If A=1 and B=0	then A`+B`=	<u> </u>		CO1- U	
	(a) 0	(b) 1	(c) 2	(d) 3		
2.	A combination only on the	depends	CO2- U			
	(a) Present	(b) Finite	(c) In-finite	(d) Cont	inious	
3.	In the case of a flip-flop toggle	J-K flip-flop with activees	itput of the	CO3- U		
	(a) High	(b) Low	(c) Half	(d) Par	Parcials	
4.	The SR latch c	onsists of			CO4- U	
	(a) 1 input	(b)2 input	(c)3 input	(d) 4 input		
5.	Which type of d		CO5- U			
	(a) SLD	(b) SROM	(c) EPROM	(d) PLD		
		PART - B (5	x 3= 15Marks)			
6.	What is Boolean		CO1- U			
7.	Define multipl		CO2- U			
8.	What is a mast		CO3- U			
9.	What are the st	circuit?	CO4- U			
10	Define Static R		CO5-11			

$PART - C (5 \times 16 = 80 Marks)$

11. (a) Simplify $F(A,B,C)=\Sigma(0,1,2,3,7)$ in sum of products and product of sum CO1-App (16) using K-map.

Or

- (b) Express the following function in a simplified manner using K map technic CO1-App $F(X,Y,Z)=\Sigma(0,1,2,6,7)$. (16)
- 12. (a) Design priority encoder with input Cin(X, Y) and draw the logic CO2-App (16) diagram?

Or

- (b) Design a logic circuit that accepts a 4-bit binary code and converts CO2-App (16) it to 4-bit Gray code with input(B3,B2,B1,B0) and output(G3,G2,G1,G0)?
- 13. (a) Analyze the operation of JK flip-flops with suitable diagrams? CO3-Ana (16)
 Or
 - (b) Construct a clocked SR flip-flop with neat diagram and also discuss CO3-App (16) its performances?
- 14. (a) Explain in detail about Hazards and its types with example? CO4-App (16)
 Or
 - (b) Explain in detail about races and types of races with suitable CO4-App (16) example?
- 15. (a) Implementation of Combinational Logic Circuit using PROM? Using CO5-App PROM realize the following expression F1 (A, B, C) = Σ m (0, 1, 3, 5, 7) F2 (A, B, C) = Σ m (1, 2, 5, 6)

Or

(b) Implement the following functions using PLA. CO5-App (16) F1 (A, B, C) = Σ m (1, 2, 4, 6)

 $F2 (A, B, C) = \Sigma m (0, 1, 6, 7)$

F3 (A, B, C) = Σ m (2, 6)