4	-	7
۱	l	

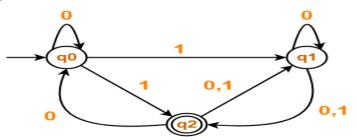
Reg. No.:					

Question Paper Code: 95204

B.E./B.Tech. DEGREE EXAMINATION, NOV 2022

Fifth Semester

Computer Science Engineering

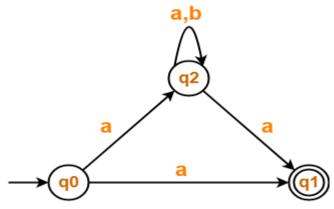

			•	•				
		19UCS5	04 – THEORY O	F COMPUTA	TION			
			(Regulation	2019)				
Dur	ation: Three hou	rs			Maximum: 10	0 Marks		
			Answer ALL (Questions				
			PART A - (5 x 1	= 5 Marks)				
1.	The smallest finite automata which accepts the language $\{x \mid x \text{ is a word over } \sum = \{a,b\}$ and length of x is divisible by 5} has states.							
	(a) 4	(b) 5	(0	e) 6	(d) 7			
2.	Two automata'	s are equal wh	en it satisfies the	following con-	ditions.	CO1- U		
	(a) their accepting and non accepting states are equal							
	(b) initial and final states are equal							
	(c) they accept	at least one sa	me string					
	(d) all the abov	e						
3.	The Given gran	nmar G:				CO2- App		
	(1) S->AS (2) S->AAS(3) A->SA (4) A->aa Which of the following productions denies the format of Chomsky Normal							
	Form?	mowing produ	ictions demes the	iormat of Cho	msky Normai			
	(a) 2,4	(b) 1,	3	(c) 1, 2, 3, 4	(d) 2, 3, 4			
4.	The language accepted by a Linear Bounded Automata:					CO1- U		
	(a) Type0	(b) Type1	(c) Ty	rpe2	(d) Type3			
5.	TM is superior	than PDA bec	ause it accepts			CO1- U		
	(a) RL	(b) CFL	(c) RL and CFL	(d) RL,CF	FL Recursive and RE	language		

PART - B (5 x 3= 15 Marks)

- 6. List out the differences between DFA, NFA and ∈ NFA. CO1- U
- 7. What is meant by equivalent states in DFA?
- 8. What is the relationship between Inference, Derivation and Parse Tree CO1- U
- 9. Define Pumping lemma for CFL.
- 10. Define Post Correspondence Problem. CO1- U

PART - C (5 x 16= 80Marks)

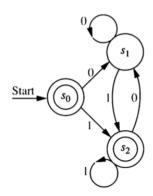
11. (a) Convert the given NFA to DFA.


Or

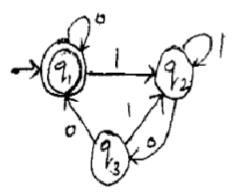
(b) Convert the given NFA to DFA.

CO2- App (16)

CO2-App


(16)

- 12. (a) Convert the Regular Expression (01+001)*00 into ε -NFA.
- CO2-App (16)


Or

(b) Construct a regular grammar that generates the language accepted CO2- App (16) by this finite state automaton.

13. (a) Construct Regular Expression for the following DFA.

Or

- (b) Find the minimized DFA for the following regular expression (a/b)* CO2- App (16) abb.
- 14. (a) Construct a PDA for the given grammar and check the validation of CO2- App (16) abcba and aba.

 $S \rightarrow aSa \mid bSb \mid c$.

Or

- (b) Construct a PDA accepting by empty stack for the language $\{a^n b^{2n} \text{ CO2- App } (16) | n \ge 1\}$.
- 15. (a) Design a Turing Machine for L={ $0^n 1^n | n \ge 1$ } CO2- App (16)
 - (b) Construct a TM to perform reverse operation. CO2- App (16)