A		Reg. No. :										
Question Paper Code: 93027												
B.E./B.Tech. DEGREE EXAMINATION, NOV 2022												
Third Semester												
Computer Science and Business System												
19UMA327- Discrete Mathematics and Calculus												
(Regulation 2019)												
Dura	ation: Three hours					Maxir	num:	100 N	/larks			
Answer All Questions												
PART A - $(10x \ 1 = 10 \ Marks)$												
1.	$P \lor \neg P$ is a								CO6-U			
	(a) Tautology	(b) Contradiction	(c) C	onting	ency	(d)	PDN	F				
2.	Contra positive of <i>P</i> –	→ Q							CO6-U			
	$(a) \neg Q \rightarrow \neg P$	$(b)\neg P \rightarrow \neg Q \qquad (c$	$(b) \neg P \rightarrow \neg Q \qquad (c) Q \rightarrow P$					(d) None of these				
3.	How many ways can l	etters of the word "GO	OOGLE	" be ar	ranged			CC	02- App			
	(a) 40	(b) 150	(c) 1	60		(d)	180					
4.	If 'm' Pigeon occupie Pigeons	s 'n'(m>n) holes then	atleast	one ho	le has mo	ore that	1	1	CO6- U			
	(a) $\left[\frac{n-1}{m}\right]$	$(b)\left[\frac{m-1}{n}\right]$	(c)	$\left[\frac{m-1}{n}\right]^+$	1	(d)	$\left[\frac{n-1}{m}\right]$	$\begin{bmatrix} 1 \\ - \end{bmatrix} + 1$				
5.	The order of group C	$G = \{1, -1, i, -i\}$ under us	sual mu	ltiplica	tion			CC	03- App			
	(a) 4	(b)0	(c)1		(d)	2						
6.	N,+) is a							CO6	- U			
	(a) Sub group	(b) semi group		(c) g	roup			(d) N	Ioniod			
7.	Find $\lim_{x \to 1^{+}} \frac{x^2 - 1}{x - 1}$							CC	04- App			
	(a)1	(b) 2	(c) 3		(d) 4					

8. CO₄- App Find the $\frac{dy}{dx}$ for $\cos \sqrt{x}$ (a) - sin \sqrt{x} (b) $\frac{-\sin \sqrt{x}}{2\sqrt{x}}$ (c) - cos \sqrt{x} (d) $\frac{\cos\sqrt{x}}{2\sqrt{x}}$ 9. CO6- U ∬dxdy gives ____ (a) Volume of R (b) Area of the region R (c) Length of R (d) None of these 10. The value of $\int_{1}^{b} \int_{1}^{a} \frac{dxdy}{xy}$ CO₅- App (a) $\log a + \log b$ (b) $\log a$ (c) $\log b$ (d) $\log a \log b$ $PART - B (5 \times 2 = 10 \text{ Marks})$ 11. Construct the truth table for $(p \lor \neg q) \rightarrow q$ CO1- App 12. Find the number of positive integers not exceeding 100 that are divisible by 5 CO₂- App or by 11 In an abelian group prove that $(ab)^2 = a^2b^2$ CO3-App 13. 14. Solve $\int \frac{dx}{x^2 - 6x + 13}$ CO₄- App 15. CO₅- App Change the order of integration $\iint f(x, y) dxdy$ $PART - C (5 \times 16 = 80 Marks)$ 16. (a) (i) Prove the following using Indirect method . CO1- App (8) $P \rightarrow Q, Q \rightarrow R, \neg P \lor \neg R, P \lor R \Rightarrow R$ (ii) Using truth table find PCNF and PDNF for CO1- App (8) $(P \land Q) \lor (\neg P \land R) \lor (Q \land R)$ Or (b) (i) Show that the premises "one student in this class knows how to CO1 - App (8) write programs in JAVA" and "Every one who knows how to write programs in JAVA can get a high- paying jop" imply the conclusion "some one in this class can get high paying job (ii) Using the rules of inference derive CO1 - App (8) $P \to (Q \to R), \ Q \to (R \to S) \implies P \to (Q \to S)$

17.	(a)	(i) Find the number of positive integers between 1 and 600 divisible by 2, 3,5 or 7	CO2 -App	(8)					
		(ii) Using Mathematical Induction show that, $n^3 + 2n$ is divisible by 3	CO2 -App	(8)					
		Or							
	(b)	(i) There are seven men and six women in a room. Find the number of ways four persons can be drawn from the room if(a) they can be male or female,(b) two must be men and two women,(c) they all are of the same Gender.	CO2 -App	(8)					
		(i) Using generating functions Solve $a_n = 2a_{n-1} + 2^n$, $a_0 = 2$	CO2 -App	(8)					
18.	(a)	(i) Let G be a finite group of order 'n' and H be any subgroup of G Then the order of H divides the order of G. (i.e) $O(H) / O(G)$	CO3- App	(8)					
		(ii) The intersection of two subgroup of a group is also a subgroup of the group	CO3- App	(8)					
Or									
	(b)	(i) Prove that in a group G is abelianiff $(a * b)^2 = a^2 * b^2$	CO3- App	(8)					
		(ii) Prove that the union of two subgroup of G needs not a sub group	CO3- App	(8)					
19.	(a)	(i) If $y = e^{ax} \cos bx$ Prove that $\frac{d^{2y}}{dx^{2}} - 2a\frac{dy}{dx} + (a^{2} + b^{2})y = 0$	CO4-App	(8)					
		(ii) Determine the reduction formula for $\int \sin^{-n} x dx$	CO4-App	(8)					
	Or								
	(b)	(i) Compute $\int_{0}^{\frac{\pi}{2}} \frac{(\sin x)^{\frac{3}{2}}}{(\cos x)^{\frac{3}{2}} + (\sin x)^{\frac{3}{2}}} dx$	CO4 -App	(8)					
		(ii) If $y = (2\cos t - \cos 2t)$, $x = (2\sin t - \sin 2t)$ Find the value of $\frac{d^2 y}{dx^2}$	CO4 -App	(8)					
		at $t = \left(\frac{\Pi}{2}\right)$							

20. (a) (i) Compute the volume of the Sphere $x^2 + y^2 + z^2 = a^2$ without CO5- App (8) transformation (ii) Change the order of integration and hence evaluate CO5- App (8) $4a - 2\sqrt{ax}$ $\int \int xy dy dx$ $0 - \frac{x^2}{4a}$ Or (b) (i) Using the Triple integration, compute the volume of the CO5- App (8)

tetrahedron $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$, x=0, y=0 &Z=0

(ii) Evaluate

 $\iint \frac{dxdydz}{\sqrt{a^2 - x^2 - y^2 - z^2}}$ over the fitst octant of the sphere $\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2 = \mathbf{a}^2$ CO5- App

(8)