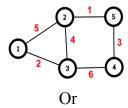
٨	
\Box	

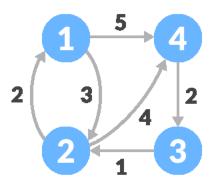
Reg. No. :										
------------	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 94C02

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2022


Fourth Semester

		Computer Science an	d Business Systems			
	19UCB403	- Introduction To Des	ign And Analysis Of Al	gorithms		
		(Regulation	ons 2019)			
Dur	ation: Three hours			Maximum: 100 Marks		
		Answer ALI	Questions			
		PART A - (10 x	1 = 10 Marks)			
1.	Which is the formal running time.	way to express the up	pper bound of an algor	rithm's CO1- U		
	(a) Big Oh Notation	(b) Omega Notation	(c) Theta Notation	(d) None of the above		
2.	In a flowchart, an inpu	ut or output instruction	is represented by	_ CO1- R		
	(a) A diamond	(b) Rectangle	(c) Parallelogram	(d) A circle		
3.	The approach of dyna	mic programming is si	imilar to	CO1- R		
	(a) Parsing		(b) Hash table			
	(c) Divide and Conqu	er algorithm	(d) Greedy algorithm			
4.	What is the time complexity of the brute force algorithm used to solve the Knapsack problem					
	(a) O(n) (b)	O(n!) (c) O	O(2n) (d)	O(n2)		
5.	Which of the followi Knapsack problem	ng methods can be us	sed to solve the	CO1- R		
	(a) Brute force algorit	hm (b)Recurs	(b)Recursion			
	(c) Dynamic Program	ming (d) Brute	force, Recursion and D	ynamic Programming		
6.	The Knapsack problem is an example of					
	(a) Divide and conque	er algorithm	(b) Greedy algorithm			
	(c)1D Dynamic Programming (d) 2D Dynamic Programmin					


7.	In si	mplex method, the feasible basic so		CO1- R		
	(a) non negativity constraint		(b) Negativity constraint			
	(c) E	Basic constraint	(d) Common constraint			
8.	How	many constraints does flow have?		CO1- R		
	(a) (One (b) Two	(c) Three	(d) Four		
9.	Whi	ch of the problems cannot be solve	d by backtracking method?	(CO3- Ana	
	(a) n	-queen problem	(b) subset sum problem			
	(c) F	Iamiltonian circuit problem	(d) travelling salesman problem			
10.	Bran	ch and bound is a			CO1- U	
	(a) p	roblem solving technique	(b) data structure			
	(c) s	orting algorithm	(d) type of tree			
		PART – B	(5 x 2= 10 Marks)			
11.	Define Big Omega Notations.				CO1- U	
12.	Defi	ne brute force method		CO1- U		
13.	Diff	erentiate prim's Algorithm and Kru	(CO2- App		
14.	Defi	ne Stable Marriage Problem		CO1- R		
15.	5. What are the additional items required for branch and bound? compare backtracking technique					
		PART –	C (5 x 16= 80 Marks)			
16.	(a)	(i) Discuss important problem Algorithm Analysis.				
		(ii) Write short note on Fundame Solving	entals of Algorithmic Problem	CO2- App	(8)	
	<i>a</i>	Or				
	(b)	Illustrate briefly on Big oh No Theta Notations. Depict the same	•	CO2- App	(16)	
17.	(a)	Explain in detail quick sorting analysis of quick sort with examp	ole.	CO3- Ana	(16)	
		Or				

2

- (b) Explain how the merge sort can be viewed as a recursive CO3- Ana application of the Divide and conquer methodology. Suggest a pseudo code for merge sort and analyze its complexities. Trace its application to the following data set 9,4,3,8,6,2,1,5,7.
- 18. (a) Using Prim's algorithm, determine minimum cost spanning CO4- Ana tree for the weighted graph shown below. (16)

(b) Using Floyd Warshall Algorithm, find the shortest path CO4- Ana distance between every pair of vertices. (16)

19. (a) Explain geometric interpretation of Linear programming with CO1- U (16) example

Or

- (b) What is bipartite graph? Outline with example CO1- U (16)
- 20. (a) Explain the traveling salesman problem using branch & bound CO1- U and backtracking. (16)

Or

(b) Explain elaborately on backtracking algorithm. CO1- U (16)