A		Reg. No. :												
	Question Paper Code: U1P03													
B.E. / B.Tech. DEGREE EXAMINATION, NOV 2022														
	First Semester													
	Civil Engineering													
	21UPH103- ENGINEERING PHYSICS													
(Common to ALL branches)														
(Regulation 2021)														
Dura	ation: Three hours								l	Maxi	mun	n: 10	0 Ma	arks
	Answer ALL questions													
	PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$													
1.	The coordination number for FCC lattice is							CO	1- R					
	(a) 12	(b) 6		(0	c) 8					(d) 24	4		
2.	The number of atoms per unit cell for a simple cubic crystal structure is CO1							1- R						
	(a) 4	(b) 1		(0	c) 2					(d) 6			
3.	Atomic packing factor	Atomic packing factor for BCC crystal lattice is							CO	1 - R				
	(a) 32%	(b) 52%		(0	c) 74	%				(d) 6	8%		
4.	If N_1 and N_2 are the number of atoms in ground state and excited state CO2- R respectively, then in population inversion						2- R							
	(a) $N_1 < N_2$	(b) $N_1 > N_2$		(0	c) N ₁	= 1	N_2			(d) N	1 > 2	$2N_2$	
5.	A hologram contains	the information a	abou	t									CO	2- R
	(a) Amplitude of the object				(b) Phase of the object									
	(c) Both amplitude and phase of the object (d) None of these													
6.	If λ_m is the wavelen absolute temperature	λ_m is the wavelength corresponding to maximum energy and T is the solute temperature, then according to Wien's displacement law,					CO	3- R						
	(a) $\lambda_m T = \text{constant}$ (b) $\lambda_m / T = \text{constant}$ (c) $\lambda_m T^{\frac{1}{2}} = \text{constant}$ (d) $\lambda_m / T^{\frac{1}{2}} = \text{constant}$							ant						

7.	According to Plan radiation and matter	<pre>nck's hypothesis, th r is not continuous bu</pre>	ne exchange of energe at it is limited to the inte	gy between the CO3- R egral multiple of				
	(a) 1/ hv	(b) h/v	(c) v/h	(d) hv				
8.	If a particle having wavelength associate	mass m is moving ted with the matter w	with velocity v, the devave is	eBroglie CO3- R				
	(a) $\lambda = h/mv$	$\lambda = h/mv$ (b) $\lambda = h/mv^2$ (c) $\lambda = h^2/mv$						
9.	The modulus of elas	sticity is		CO4- R				
	(a) Stress × Strain	(b) Stress / Strain	(c) Strain / Stress (c	l) Stress× Young's modulus				
10.	The ratio of lateral	strain to linear strain	is	CO4- R				
	(a) Elastic limit	(b) Young's modulu	s (c) Rigidity modu	lus (d) Poisson's ratio				
PART - B (5 x 2= 10 Marks)								
11.	Calculate the Mille units along x, y and	r Indices of a plane z axes respectively.	which cuts the interce	epts of 2, 3, 4 CO1- App				
12.	Define unit cell.			CO1- R				
13.	What is holography?							
14.	Mention any two physical significance of the wave function ψ .							
15.	State Hooke's law.							
$PART - C (5 \times 16 = 80 \text{ Marks})$								

16. (a) What are miller indices? Sketch two successive (110) planes. CO5- App (16) Show that for a cubic lattice the distance between two successive plane (h k l) is given by

$$d = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

Or

- (b) Explain with necessary diagram point defects and line defects that CO1-U (16) occur in crystals.
- 17. (a) Explain the modes of vibrations of CO_2 molecule. Describe the CO2-U (16) construction and working of CO_2 laser with necessary diagrams.

Or

(b) Describe the construction and working of CO_2 laser. CO2-U (16)

18.	(a)	(i) Show that the atomic packing factor for FCC is 74%.	CO1- U	(8)
		(ii) Derive Schrodinger's time independent wave equation.	CO3- U	(8)
		Or		
	(b)	(i) Explain surface defects in crystals.	CO1- U	(8)
		(ii) Derive Schrodinger's time dependent wave equation.	CO3- U	(8)
19.	(a)	Explain three moduli of elasticity with suitable diagram. Or	CO3- U	(16)
	(b)	Solve Schrodinger's wave equation for a particle lying in a one dimensional box of length 'a'.	CO3- U	(16)
20.	(a)	A patient's leg was put into traction, stretching the femur from a length of 0.46 m to 0.461 m. The femur has a diameter of 3.05 cm. With the knowledge that bone has a Young's modulus of $\sim 1.6 \times 10^{10}$ in tension, what force was used to stretch the femur? Or	CO6- Ana	(16)
	(b)	A circular and square cantilever is made of same material and has equal area of cross-section and length. Analyzethe ratio of their	CO6- Ana	(16)

equal area of cross-section and length. Analyzethe ratio of their depression for a given load.

U1P03