B.E. / B.Tech. DEGREE EXAMINATION, NOV 2022

First Semester

Civil Engineering

15UPH103- ENGINEERING PHYSICS

(Common to ALL branches)

(Regulation 2015)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A -	(10 x 1 =	10 Marks)
----------	------------	-----------

1.	In atoms a	atoms and molecules are arranged in a regular fashion.					
	(a)Amorphous solids	(b) Crystals	(c) Glasses	(d) Plastics			
2.	crystal system has maximum number of Bravai's lattices.						
	(a) Cubic	(b) monoclinic	(c) triclinic	(d) Orthorhombic			
3.	Intensity of a sound decibel.	wave is 0.4 W m^{-2} ,	its sound intensity level	is CO2-R			
	(a) 0	(b) 110	(c) 116	(d) 118			
4.	Choose the appropriate material for magnetostriction oscillator.						
	(a) Iron	ron (b) Glass (c) copper					
5.	con	confirms the transverse nature of light.					
	(a) Interference	(b) Polarization	(c) Compton effect	(d) Diffraction			
6.	is put	mping technique used	in solid lasers.	CO3- R			
	(a) Electric discharge	(b) Direct conversion	on (c) Optical pumping	g (d) Heating			
7.	Compton effect can be	e explained by		CO4- R			
	(a) Quantum theory	(b) Classical theory	(c) Classical mechanics	(d) Diffraction			
8.	Wave length associate	ed with an electron at r	est is	CO4 -R			
	(a) 0 A°	(b) 10 A°	(c) 100 A°	(d) Infinity			

A

9.	law states that "within the elastic limit stress is directly proportional to strain".					CO5- R					
	(a) l	Elastic law	(b) Hooke	's law	(c) Weber-Fechner law (d) Ohm's			s law			
10.	Lee of	s disc methoe materia	d is used 1.	to calcu	late the	rmal	conductivity		CO5 -R		
	(a) l	insulating	(b) Conduc	eting	(c) Sem	icond	ucting	(d) Nano			
	PART - B (5 x 2 = 10 Marks)										
11.	Dist	inguish between	crystals and a	amorphous	s solids.				CO1- R		
12.	Intensity of the sound waves produced during thunder is 0.1 W m ⁻² . Calculate CO2- R sound intensity level.										
13.	List any four industrial applications of laser.						CO3 -R				
14.	X rays having wavelength 10 A° is scattered by carbon atoms with scattering CO4 -R angle 45°. Calculate the change in wave length of scattered X ray photons.										
15.	Stat	e Hooke's law.							CO5- R		
			PA	RT - C (5	x 16= 80	Mark	5)				
16.	(a)	Prove that the pa hexagonally close	acking factor se packed str	for face c ucture are Or	entered cu same.	ubic st	ructure and	CO1 -App	(16)		
	(b)	Explain the Bric	lgeman meth	od to grow	single cr	rystals		CO1- U	(16)		
17.	(a)	Construct an os sound waves hav	scillator circ	uit using cy more th Or	quartz cr an 20000	rystal Hz.	to generate	CO2 -App	(16)		
	(b)	Describe an ex ultrasonic wave velocity of ultra	xperimental s in given l sonic waves	setup to o iquid also in liquid.	determine derive tl	e the he exp	velocity of pression for	CO2- U	(16)		
18.	(a)	Discuss the the light.	ory of plane	e, circular	and elli	pticall	y polarized	CO3 -Ana	(16)		
	(b)	Discuss the proprocess. 1. Stimulated ab 2. Spontaneous of 3. Stimulated en Also deduce Ein	obability of sorption (or) emission. nission (or) I astein's coeff	atomic tra Induced a nduced em	ansitions bsorption hission.	in the	e following	CO3- Ana	(16)		

19. (a) Derive Schrödinger's time independent and dependent wave CO4-U (16) equations.

Or

- (b) What is Compton effect? Explain the Compton effect based on CO4 -U (16) quantum theory and also derive the expression for Compton effect.
- 20. (a) Derive an expression for depression produced at the loaded end of CO5 -U (16) the cantilever. Based on that how will you determine the Young's modulus of the given brass beam.

Or

(b) Define thermal conductivity. How will you determine the thermal CO5 -U (16) conductivity of a given card board by Lee's disc method.

##