A		Reg. No. :										
	Question Paper Code: U3025											
	B.E./B.Tech. DEGREE EXAMINATION, NOV 2022											
	Third Semester											
		Civil E	ngineering									
	21UMA325- PROB	ABILITY, STATIS	FICS AND TRANS	FORM TECHNIQU	ES							
		(Regula	tions 2021)									
Dur	ation: Three hours			Maximum: 10	0 Marks							
Answer All Questions												
		PART A - (10	0x 1 = 10 Marks									
1.	Probability of an impo	ossible event is			CO6-U							
	(a) 1	(b) 10	(c) 0	(d) 100								
2.	The mean of the rando	om variable is denote	ed by		CO6- U							
	(a) E(X)	(b) $E(X^2)$	(c) 0	(d) 1								
3.	The degrees of freedo	m in t-tests is			CO6- U							
	(a) n-1	(b) n-2	(c) n-3	(d) n-4								
4.	Choose the t-test for r	nean			CO6- U							
	(a) $t = \frac{\overline{x_1} - \mu}{s / \sqrt{n - 1}}$	(b) $t = \frac{\overline{x_1} + \mu}{s / \sqrt{n-1}}$	(c) $t = 0$	(d) None of the a	bove							
5.	If $f(x + t) = f(x)$, the	n f(x) is said to be a	n		CO6- U							
	(a) Odd Function (on (d) Self Reci	procal									
6.	The Fourier constant	b_n in $(-\pi,\pi)$ for x sin	x is		CO6- U							
	(a) x^2	(b) 3x	(c) 0	(d) 1								
7.	F[xf(x)] =				CO6- U							
	(a) $-F_c[f(x)]$	(b) $-\frac{d}{ds}$ { $F_s[f(x)]$ }	(c) $-F_s[f(x)]$	$(\mathbf{d}) - \frac{d}{ds} \{ F_c [$	f(x)]							

- 8. $F_s[e^{-ax}] =$ CO6- U (a) $\sqrt{\frac{2}{\pi}} \frac{s}{s^2 + a^2}$ (b) $\sqrt{\frac{2}{\pi}} \frac{a}{s^2 + a^2}$ (c) $\sqrt{\frac{2}{\pi}} \frac{a^2}{s^2 + a^2}$ (d) $\sqrt{\frac{2}{\pi}} \frac{s^2}{s^2 + a^2}$ CO5- U
- The Z transform of a unit step function is _____. 9.

(a)
$$\log(\frac{z}{z+1})$$
 (b) $\frac{z}{z+1}$ (c) $\log(\frac{z}{z-1})$ (d) $\frac{z}{z-1}$

10. Evaluate $Z(\frac{1}{n!})$

(a)
$$e^{-1/z}$$
 (b) $e^{1/z}$ (c) e^{2z} (d) $e^{1/z} - 2$

 $PART - B (5 \times 2 = 10 \text{Marks})$

11. If
$$f(x) = \begin{cases} Kxe^{-x}, x > 0 \\ o, elsewhere \end{cases}$$
 is the PDF of a RV X, Find K

- 12. Write the important properties of F-distribution CO2- U
- Find b_n in the Fourier series of $f(x) = |\cos x|$ in $(0, 2\pi)$. CO3- App 13.
- State Fourier integral theorem. 14.

15. Prove that
$$Z(sin\frac{n\pi}{2}) = \frac{z}{z^2+1}$$
 CO5 App

$$PART - C (5 \times 16 = 80 Marks)$$

16. (a) A Random Variable X has the following probability distribution CO1-App (16)

X=x	0	1	2	3	4	5	6	7		
P(X=x)	0	k	2k	2k	3k	k ²	$2k^2$	$7k^2+k$		
Find (i) 'k'										
(ii) $P(X < 6)$, $P(X \ge 6)$ & $P(1.5 < X < 4.5 / X > 2)$										

- (iii) If $P(X \le k) > \frac{1}{2}$ find the minimum value of 'k'
- (iv) Distribution function of x

Or

(b) (i) The number of monthly breakdowns of a computer is a R.V. CO1 - App (8)having a Poisson distribution with mean equal to 1.8. Find the Probability that his computer will function for a month (a) Without a breakdown (b) With only one breakdown (c) With at least one breakdown

(ii) Using an Geometric distribution State and Prove the memory CO1 - App (8)less property.

CO5- U

CO6-U

17. (a) (i) A sample analysis of examination results of 500 students was CO2 -Ana (8) made. It was found that 220 students have failed, 170 have secured a third class, 90 have secures a second class and the rest, a first class. So these figures support the general belief that the above categories are in the ratio 4:3:2:1 respectively?

(ii) Two group of students A and B were tested , the marks CO2 -Ana (8) obtained were as follows

А								49	41
В	29	28	26	35	30	44	46		

Examine the significance of difference between the average marks secured by the students of the above two groups

(b) (i) Two horses A and B were tested according to time (in seconds) CO2 -Ana (8) to run on a particular track with the following results:

Horse A	28	30	32	33	33	29	34
Horse B	29	30	30	24	27	29	

Test whether horse A is running faster than B at 5% level.

(ii) A group of 10 rats fed on diet A and another group of 8 rats CO2 -Ana (8) fed on diet B, recorded the following increase in weight.

Diet	5	6	8	1	12	4	3	9	6	10
А										
Diet	2	3	6	8	10	1	2	8		
В										

Find the variances are significantly different

18. (a) Express $f(x) = \frac{1}{2}(\pi - x)$ as a Fourier series of period 2π in the CO3- App (16) interval $0 < x < 2\pi$.

Or

(b) The table of values of the function y = f(x) is given below: CO3- App (16)

				-		-	
X:	0	$\pi/3$	$2\pi/3$	π	$4\pi/_{3}$	$5\pi/_{3}$	2π
y:	1.8	0.3	0.5	2.16	1.3	1.76	1.8

Find a Fourier series up to the third harmonic to represent f(x) in terms of x

- 19. (a) Compute the Fourier Transform of $f(x) = \begin{cases} 1 x^2 & |x| < 1 \\ 0 & otherwise \end{cases}$ CO4-App (16) and hence evaluate the value of (i) $\int_{0}^{\infty} \frac{\sin t - t \cos t}{t^3} dt$ $\int_{0}^{\infty} \left(\frac{\sin t - t \cos t}{t^3}\right)^2 dt$ Or (b) Compute (i) $\int_{0}^{\infty} \frac{dx}{t^3} = \int_{0}^{\infty} \frac{x^2 dx}{t^3}$ using Fourier CO4 App (16)
 - (b) Compute (i) $\int_{0}^{\infty} \frac{dx}{(x^2+1)(x^2+4)}$ (ii) $\int_{0}^{\infty} \frac{x^2 dx}{(x^2+9)^2}$ using Fourier CO4-App (16) transform
- 20. (a) (i) Solve the difference equation $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$ CO5- App (8) given that $y_0 = 0, y_1 = 0$
 - (ii) Using Convolution theorem find $Z^{-1}\left[\frac{8z^2}{(4z-3)(2z+1)}\right]$ CO5- App (8)
 - (b) (i) Solve the difference equation $y_{n+2} + 4y_{n+1} + 3y_n = 2^n$ CO5- App (8) given that $y_0 = 0, y_1 = 0$ (ii) Evaluate $Z[\cos n\theta]$ and $Z[\sin n\theta]$ CO5- App (8)