A
Δ
\Box

Reg. No.	•		
1100	•		

Question Paper Code: 93025

B.E./B.Tech. DEGREE EXAMINATION, NOV 2022

Third Semester

Civil Engineering

19UMA325- Probability, Statistics and Transform Techniques

(Regulation 2019)

Duration: Three hours

Maximum: 100 Marks

Answer All Questions

PART A - (10x 1 = 10 Marks)

If X is the discrete random variable having the probability density function, CO1-App then Calculate k.

X	-1	0	1
P(X)	k	2k	3k
(h)	-1/6	(c) -1	

(a) 1/6

(d) 1

A random variable X follows an exponential distribution with parameter CO6- App $\lambda = 1/5$ then find the mean value.

(a) 1/4

- (b) 1/2
- (c) 3/4

(d) 1

If $S_1^2 = 3.761$ and $S_2^2 = 5.249$ then value of F- ratio is

CO2- App

- (a) 0.717
- (b) 1.396
- (c) 9.010

(d) 1.488

For a sample of size n=25, the degrees of freedom for the sample size is 4.

CO6- App

(a) 24

- (b) 22
- (c)20

(d) 25

If a function f(x) is even, its Fourier expansion contains only ----- terms

CO6- App

- (a) Sine
- (b) Cosine
- (c) tan
- (d) None of these

If f(x + t) = f(x), then f(x) is said to be an _____ 6.

CO6- App

- (a) Odd Function
- (b) Even Function
- (c) Periodic function (d) Self Reciprocal

If F[f(x)] = f(s) then the function is said to be 7. CO6- App

(a) Odd

(b) Even

(c) Self Reciprocal

(d) Periodic

If F[f(x)] = f(s) then F[f(ax)] =

CO4- App

(a) $\frac{1}{-a}F\left(\frac{s}{a}\right)$ (b) $\frac{1}{a}F\left(\frac{s}{a}\right)$ (c) $\frac{1}{|\mathbf{a}|}F\left(\frac{s}{a}\right)$

(d) $\frac{1}{s} F\left(\frac{s}{a}\right)$

The Z transform of a unit step function is _____.

CO6- App

(a) $\log(\frac{z}{z+1})$

 $(b)^{\frac{z}{z+1}}$

(c) $\log(\frac{z}{z-1})$

 $(d)^{\frac{z}{z-1}}$

10. $Z^{-1}\left(\frac{z}{z-a}\right)$

CO5- App

(a) $(-a)^n$

(b) a "

 $(c)z^n$

 $(d)(-z)^n$

PART - B (5 x 2= 10Marks)

- 11. The mean and standard deviation of the binomial distribution are 20 and 4 CO1- App respectively, then calculate the value of the parameter n.
- 12. If A,B are two independent attributes and if (A) = 36, (B) = 25 and N = 100CO2- App then find (AB).
- 13. Find b_n in the Fourier series of $f(x) = |\cos x|$ in $(0,2\pi)$

CO₃-U

14. State First shifting theorem on Fourier Transforms.

CO6- U

15. State Initial and final value Theorem on Z Transform

CO6- U

PART - C (5 x 16= 80Marks)

16. (a) A RV X has the following distribution

CO1- App (16)

X	0	1	2	3	4	5	6	7	8
P(X)	a	3a	5a	7a	9a	11a	13a	15a	17a

- Calculate the value of 'a' (i)
- Calculate P(X < 3), $P(X \ge 3)$ & P(1 < X < 5)(ii)
- Calculate the cumulative function of X (iii)

Or

(b) (i) Find the mgf of the random variable X whose probability CO1 - Ana (8) density function is given by $f(x) = 2e^{-2x}$; $x \ge 0$ and hence find it's mean and variance.

(ii) A random variable X has density function given by CO1-Ana (8)

$$f(x) = \begin{cases} \frac{1}{k}, & for \ 0 < x < k \\ 0, & otherwise \end{cases}$$

Find (i). M.G.F (ii) Mean (iii) Variance

17. (a) (i) The following data are collected on two characters.

CO2 -Ana (8)

	Smokers	Non Smokers
Literates	83	57
Illiterates	45	68

Using chi-square test to find is there any relation between smoking and literacy

(ii) 1000 students at college level were according to their I.Q and CO2 -Ana (8) their economic conditions. What conclusion can you draw the following data

Economic	I.Q level		
condition	High	Low	
Rich	460	140	
Poor	240	160	

Or

(b) (i) Two horses A and B were tested according to time (in seconds) CO2 -Ana to run on a particular track with the following results:

			•					
	Horse A	28	30	32	33	33	29	34
	Horse B	29	30	30	24	27	29	

Test whether horse A is running faster than B at 5% level.

(ii) The following table gives the values of protein from CO2-Ana (8) Kangeyam cow's milk and buffalo's milk. Examine if these difference are significant.

Cow's	1.90	1.95	2.00	2.02	1.85	1.80
milk						
Buffalo's	2.12	2.00	2.20	2.45	2.20	2.10
milk						

Table value of t at 5% = 2.228

- 18. (a) (i) Calculate the Fourier series expansion for $f(x) = x + x^2$ in $(-\pi, CO3-App)$ (8)
 - (ii) Express $f(x) = \frac{1}{2}(\pi x)$ as Fourier series of period 2π in the CO3-App interval $0 < x < 2\pi$ and hence deduce the sum of series $1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \dots = \frac{\pi}{4}$

Or

- (b) (i) Find the Half range cosine series for $f(x) = x(\pi x)$ in $(0, \pi)$. CO3- App (8)
 - (ii) Find the Half range Sine Series of f(x) = x in $(0, \pi)$ CO3- App (8)
- 19. (a) Show that the Fourier transform of CO4-App (16) $f(x) = \begin{cases} a^2 x^2 & |x| < a \\ 0 & |x| > a \end{cases}$ is $2\sqrt{\frac{2}{\pi}} \left[\frac{\sin sa sa \cos sa}{s^3} \right]$ Hence

deduce (i) $\int_{0}^{\infty} \frac{\sin t - t\cos t}{t^3} dt = \frac{\pi}{4} (ii) \int_{0}^{\infty} \left(\frac{\sin t - t\cos t}{t^3} \right)^2 dt = \frac{\pi}{15}$

- (b) (i) Evaluate $\int_{0}^{\infty} \frac{x^2 dx}{(x^2 + a^2)^2}$ (8)
 - (ii) Prove that $f(x) = e^{-\frac{x^2}{2}}$ is self-reciprocal under Fourier series

 Transform

 (8)
- 20. (a) (i) Find the $z^{-1} \left[\frac{12z^2}{(3z-1)(4z-1)} \right]$ using convolution theorem (8)
 - (ii) Solve $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$ given $y_0 = y_1 = 0$ CO5- App (8)

Or

- (b) (i) Evaluate $Z[r^n \cos n\theta]$ and $Z[r^n \sin n\theta]$ CO5- App (8)
 - (ii) Using convolution theorem find $z^{-1} \left(\frac{z^2}{(z+1)(z-2)} \right)$ CO5- App (8)