Α		Reg. N	0.:]	
Question Paper Code: 93105													
B.E. / B.Tech DEGREE EXAMINATION, NOV 2022													
Third Semester													
Civil Engineering													
19UCE305 FLUID MECHANICS													
(Regulation 2019)													
Duration: Three hours Maximum									num:	100	Mark	S	
Answer ALL Questions													
PART A - $(5 \times 1 = 5 \text{ Marks})$													
1.	Atmospheric pressure	e held in terms o	of wa	ter co	lumn i	S						CO1	- U
	(a) 7.5 m	(b) 8.5 m		((c) 9.8	l m			(d) 1	10.3 1	n		
2.	Bernoulli's theorem deals with the law of conservation of									CO1	- U		
	(a) Mass	a) Mass (b) Momentum (c) Energy (d) None of					of the	ie above					
3.	The unit of physical quantity which does not depend on the unit of any other (CO3-	- U					
	physical quantity is called as												
	(a) independent dimension			(b) fundamental dimension									
	(c) core dimension			(d) none of the above									
4.	A liquid flows throu ratio of their pipe dia loss in the two pipes?	igh pipes 1 and meters d1 : d2 b ?	l 2 w be 3:2	rith th 2, wha	e sam at will	e flow be the	v velo ratio	ocity. of th	If the he	he ad	С	O2- A	Ana
	(a) 3:2	(b) 9:4	(c) 2	:3			(d) 4:	9				
5.	The boundary layer s	eparation takes	place	eif								CO1	- U
	(a) Pressure gradient is zero			(b) Pressure gradient is positi						ositiv	/e		
	(c) Pressure gradient is negative (d) None of the above					ve							
PART - B (5 x 3 = 15 Marks)													
6.	What is a fluid? How are fluids classified?							C	01 - U	J			
7.	Define stream line.										C	01 - U	J

8. List the types of similarities between model and prototype.. CO1- U

9.	Defi	ine critical velocity	CO1- U		
10.	Illus	strate the examples of formation of boundary layer in day to day life	CO2- App		
		PART – C (5 x 16= 80 Marks)			
11.	(a)	A 400 mm diameter shaft is rotating at 200r.p.m. in a bearing of length 120mm. If the thickness of oil film is 1.5 mm and the dynamic viscosity of the oil is 0.7 Ns/m^2 . Determine the torque required to overcome friction in bearing and power utilized in overcoming viscous resistance. Assume a linear velocity profile. Or	CO2- App	(16)	
	(b)	A trapezoidal channel 2m wide at the bottom and 1m deep has side slope 1:1 determine the Total pressure and Centre of pressure on the vertical gate closing the channel when its full of water	CO2- App	(16)	
12.	(a)	Briefly describe about velocity potential function and stream function and its relations.	CO1- U	(16)	
	(b)	A 30cm diameter pipe conveying water branches into two pipes of diameters 20cm and 15 cm respectively. if the average velocity in the 30cm diameter pipe is 2.5m/s.Find the discharge in the pipe, also determine the velocity in 15cm pipe .if the average velocity in 20cm diameter pipe is 2m/s	CO2- App	(16)	
13.	(a)	The efficiency η of a fan depends on the density ρ , the dynamic viscosity μ of the fluid, the angular velocity ω , diameter D of the rotor and the discharge Q. Express η in terms of dimensionless parameters. Use (Rayleigh's Method).	CO2- App	(16)	
	(b)	Discuss about Buckingham's π theorem. State the procedure for solving problems.	CO2- App	(16)	
14.	(a)	A sudden enlargement of a water main from 240mm to 480mm diameter ,The hydraulic gradient by 10mm.Estimate the rate of flow.	CO2- App	(16)	
	(b)	An oil specific gravity of 0.9 and viscosity 0.06poise is flowing through a pipe of diameter 200mm at the rate of 60litres/s.Find the head lost due to friction for a 500m length of pipe. Find the power required to maintain this flow.	CO2- App	(16)	

15. (a) A flat plate 1.5m X 1.5m moves at 50km/hr in stationary air of CO3- Ana (16) density 1.15kg/m³. If the coefficient of drag and life are 0.15 and 0.75 respectively. Determine the lift force, drag force ,resultant force and the power required to keep the plate in motion

Or

(b) Determine the thickness of the boundary layer at the tailing edge CO2- App (16) of smooth plate of length 4 m and of width 1.5 m, when the plate is moving with a velocity of 4 m/s in stationary air. Take kinematic viscosity =1.5 X 10^{-5} m²/s