4	^	7
(,

(a) discretization

Reg. No. :										
------------	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 56101

B.E./B.Tech. DEGREE EXAMINATION, NOV 2022

Sixth Semester

Civil Engineering

15UCE601- STRUCTURAL ANALYSIS - II

(Regulation 2015)

Dui	ation: Three hours	Maxin	Maximum: 100 Marks		
		Answer ALL	Questions		
		PART A - (5 x	1 = 5 Marks)		
1.	The shape factor of ci	CO1- R			
	(a) 1	(b) 1.7	(c) 2	(d) 2.5	
2.	The resulting parame method is	•	nalyzed by matrix stiffness	s CO2- R	
	(a) force	(b) moment	(c) displacement	(d) rotation	
3.	The static indetermina	acy value for a beam fi	xed at both ends is	CO3- R	
	(a) 0	(b) 1	(c) 2	(d) 3	
4.	The length of the suspits horizontal span.	pension cable will be	to/than	n CO4- R	
	(a) more	(b) less	(c) twice	(d) thrice	
5.	The process of uniting	g all the elements toget	her is known as	CO5- R	

(c) zonation

(d) transformation

(b) assemblage

$$PART - B$$
 (5 x 3= 15Marks)

6. State the lower bound theorem. CO1- R

7. When do you prefer matrix stiffness method of analysis? CO2- R

8. Define flexibility of a member. CO3- R

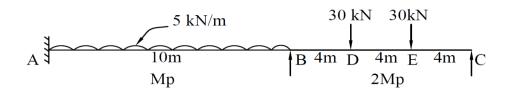
9. What is meant by discretization? CO4- R

10. Define tension coefficient of a truss member. CO5- R

$$PART - C$$
 (5 x 16= 80Marks)

11. (a) Determine the shape factor and plastic moment of the CO1-App (16) symmetrical steel section (I section). Assume yield stress of steel is 250 MPa.

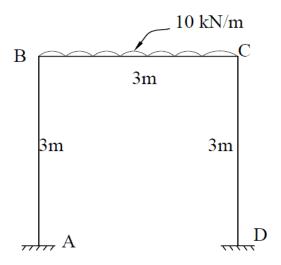
Total depth=600 mm

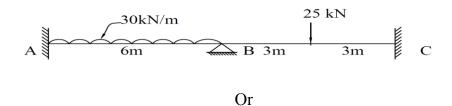

Breadth of each flange= 250 mm

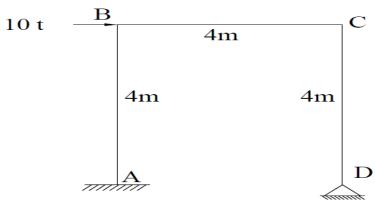
Depth of each flange =30 mm


Thickness of web= 12 mm

Or

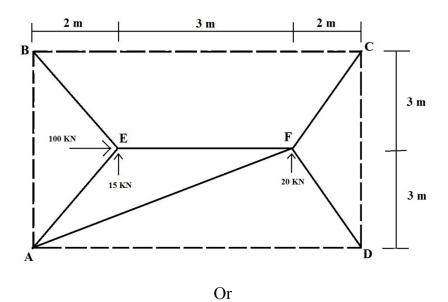

(b) A continuous beam ABC is loaded as shown in fig. Determine the CO1- App (16) required Mp, if the load factor is 3.2.


12. (a) Analyze the continuous beam by matrix stiffness method. CO2- Ana (16)


(b) Compute the final end moments for the portal frame by matrix CO2- Ana (16) stiffness method.

13. (a) Analyze the continuous beam by flexibility matrix method. CO3 Ana (16)

(b) Analyze the portal frame by flexibility method.



CO3- Ana (16)

14. (a) Explain the principle of finite element method in detail. CO4- U (16)

Or

- (b) Develop strain displacement matrix and stiffness matrix for the CO4- Ana (16) two noded bar element of (30,60) (40,80). Assume E=70 GPa & A=200 mm².
- 15. (a) A space frame shown in figure is supported at A,B,C and D in a CO5-App (16) horizontal plane, through ball joints. The member EF is horizontal, and is at a height of 3 m above the base. The loads at the joints E and F shown in figure act in a horizontal plane. Find the forces in all the member of the frame.

(b) A suspension bridge is of 160 m span. The cable of the bridge has CO5- App (16) a dip of 12 m. The cable is stiffened by a three hinged girder with hinges at either end and at centre. The dead load of the girder is 15kN/m. Find the greatest positive and negative bending moments in the girder when a single concentrated load of 340 kN passes through it. Also find the maximum tension in the cable.