4	-	٦
4	1	١,
u	l	

Reg. No.:					

Question Paper Code: 95103

B.E./B.Tech. DEGREE EXAMINATION, NOV 2022

		Fift	th Semester		
		Civil	Engineering		
	19UC	CE503 – DESIGN OF	REINFORCED CO	NCRETE ELEMENTS	
		(Regu	ılations 2019)		
Dur	ation: Three hours			Maximum: 100	Marks
		Answer	ALL Questions		
		PART A -	$(5 \times 1 = 5 \text{ Marks})$		
1.	Modular ratio and	σcbc (N/mm ²) for M2	20 grade concrete are	2	CO1- U
	(a) 13.33,7	(b) 6,3	(c) 3, 6	(d) 7, 13.33	
2.		x 5 m has 150 mm th dentify the correct star	_	n brick masonry	CO1- U
	(a) One way slab	(b) Two-way slab	(c) Flat slab	(d) Grid slab	
3.	For 2-legged stirre equal to	ups of diameter 8mm	the area of shear r	reinforcement is	CO1- U
	(a) 140.74mm ²	(b) 120.64 mm ²	(c) 100.53 mm ²	(d) 80.42 mm	n^2
4.	The anchorage values	ue of standard 90° bei	nd in mm for 16 mm	n dia HYSD	CO1- U
	(a) 96	(b) 128	(c) 144	(d) 160	
5.	The length of the s	stair case situated betw	veen two landings is	called	CO1- U
	(a) Rise	(b) Tread	(c) Flight	(d) Waist	
		PART – B	$(5 \times 3 = 15 \text{ Marks})$		
6.	Draw Representat and write the defin	ive Stress, Strain Cur nite yield point.	rve for Cold Worke	d Deformed Bas	CO1- U
7.		ced with 10 mm dia. (250 mm c/c as distribu	=		CO2- App

- is 150 mm draw the reinforcement details of the slab.
- 8. Sketch and show the difference between Singly and Doubly reinforced beam CO2- App

- 9. Draw the reinforcement details of a rectangular column with 6 20 mm dia CO2- App and 8mm ties with a spacing of 150 mm c/c
- 10. Illustrate and explain where the bending moment and shear will be critical in a footing CO2- App

 $PART - C (5 \times 16 = 80 Marks)$

11. (a) Explain the assumptions made in working stress and Limit state CO2-App (16) design in detail.

Or

- (b) Determine the moment of resistance of a rectangular beam section CO2- App (16) of 300 mm width and 500 mm effective depth which is reinforced with 3 16 mm dia. at tension zone by WSD method. Consider concrete grade of M20 and steel grade Fe 415.
- 12. (a) Design a one way slab with a clear span of 3.5 m, simply CO2-App (16) supported on 200 mm thick concrete masonry walls to support a live load of 4 kN/m². Adopt M 20 grade concrete and Fe 415 HYSD bars as per limit state method followed in IS456:2000.

 Draw the reinforcement details.

Or

- (b) Design a two way slab for an office floor of size 3.5 m by 4.5 m, CO2- App (16) with discontinuous and simply supported edges on all the sides with corners prevented from lifting and supporting a service live load of 4 kN/m2. Adopt M 20 grade concrete and Fe 415 HYSD bars as per limit state method followed in IS456:2000.Draw the reinforcement details.
- 13. (a) Design a singly reinforced beam to suit the following data: CO2- App Clear Span = 4 m Width of support = 300 mm

 Service Load = 5 kN / m

 Materials: M 20 Grade Concrete Fe415 HYSD bars

Or

(b) Design a reinforced concrete beam to suit the following data: CO2- App (16)
Clear Span = 5 m Width of support = 250 mm Overall depth =
450 mm
Service Load (DL + LL) = 40 kN / m Effective cover = 50 mm
Materials: M - 25 Grade Concrete Fe500 HYSD bars

(16)

14. (a) Determine the reinforcement to be provided in a square column CO2- App (16) subjected to uniaxial bending, with the following data:

Size of column 450 x 450 mm Concrete mix M 25

Characteristic strength of reinforcement 415 N/mm2

Factored load 2500 kN

Factored moment 200 kNm

Arrangement of reinforcement: (a) On two sides (b) On four sides

Draw the reinforcement details.

Or

- (b) Illustrate the effective length of compression members with CO2-App (16) different support conditions in a tabular format with the aid if IS456–2000 and comment on the theoretical value and recommended value
- 15. (a) Design a square footing of uniform thickness to carry an axial load CO2- App (16) of 1200KN, size of column is 400X400mm safe bearing capacity of soil is 150 KN/m². Use M20 grade of concrete and Fe 415 steel.

Or

(b) Design a suitable footing for a R.C. column of size 300 x 500mm. CO2-App (16) Supporting a factored axial load of 1500kN. Assume safe bearing capacity of soil as 200 kN/m² Adopt M20 grade of concrete and Fe415 grade of steel. Sketch the details of reinforcements in footings.