•
Λ

Reg. No.:					

Question Paper Code: 97902

B.E./B.Tech. DEGREE EXAMINATION, NOV 2022

Seventh Semester

Chemical Engineering

		19UCH702 - TRANS	PORT PHENOMENA					
		(Regulati	ions 2019)					
Dur	ation: Three hours			Maximum: 100 Marks				
		Answer AL	L Questions					
		PART A - (10	x 1 = 10 Marks					
1.	Tooth paste is an exan	nple of		CO1-	R			
	(a) Newtonian fluid	(b) Dilatant	(c) Bingham	(d) Pseudo plastic				
2.	Power law model is al	so called as		CO1-	R			
	(a) Bingham model		(b) Oswald-de Waale model					
	(c) Eyring model		(d) The Ellis model					
3.	$DV\rho/\mu$ is called			CO2-	R			
	(a) Grashoff number	(b) pradntl number	(c) Reynolds number	(d) Nusselt Number				
4.	For laminar flow Rey	nolds number is		CO2-	R			
	(a) $N_{Re} = 2100$	(b) $N_{Re} < 2100$	(c) $N_{Re} > 2100$	(d) $N_{Re} > 4000$				
5.	Sun is the finest exam	ple of		CO3-	R			
	(a) Convection		(b) heat flux					
	(c) radiation		(d) Fission.					
6.	The ratio of driving fo	orce and resistance is c	alled	CO3-	R			
	(a) Force	(b) Flux	(c) shear stress	(d) shear rate				
7.	What is the unit of dif	fusion coefficient?		CO4-	R			
	(a) m^2 .	(b) s	(c) m^2 s.	(d) m^2/s .				
8.	Diffusion of compone	nts between the phase	s at equilibrium is	CO4-	R			
	(a) Zero (b) Infi	inity (c) Changes	s continuously (d) I	Diffusion never occurs				

9.		sider the above nolds numbered	problem,	estimate	the	value	of		(CO5- R
	(a) (0.12 (b) 0.13 (c) 0.14 (d)							(d) 0.15	
10.	The	fundamental law u	sed for mor	mentum tr	ansfer	is			(CO5- R
	(a)	Fourier's law	(b) Fick's	law (c)	Newto	ons's l	aw ((d) Erying	model	
			PAR	AT - B (5 x	x 2= 10) Marl	ks)			
11.	Defi	ne Viscosity.							(CO1- U
12.	Wha	at is No slip conditi	on?						(CO2- U
13.	Defi	ne Conduction.							(CO3- U
14.	Defi	ne Fick's law of di	ffusion						(CO4- U
15.	State	e the Reynold's ana	alogy.						(CO5- R
			PA	ART – C (:	5 x 16=	= 80 N	/arks)			
16.	(a)	Explain the theory	of viscosity	of liquids.					CO1- U	(16)
				Or						
	(b)	Compute the mean path λ of O_2 at 1 atrimean free path to the Data: $K = 1.38 \times 10^{-16}$ erg $N = 6.023 \times 10^{23}$ l/g $n = Flow$ behavior in	m and 273.2 ^t ne molecular g/mol.K gm mole	⁰ K. Assum diameter i	e d = 3	.0 A.	what is			(16)
17.	(a)	Derive Navier-Sto	okes equation	on by equa Or	ation of	f moti	on.		CO2- App	(16)
	(b)	Find the equation flowing in an ar Assume that the fl	nnular regi	on in two	•		-			(16)
18.	(a)	Calculate the heat composed of 25.4 temperature is 35% thermal conductive	mm thick 2.7 K and t	fibre insulthe outside	lating l e temp	ooard, eratur	where	e the inside	**	(16)

- (b) A thick walled cylindrical tubing of hard rubber having an inside CO3-App (16) radius of 5mm and outside radius of 20 mm is being used as temporary cooling coil in a bath. Ice water is flowing rapidly inside, and the inside wall temperature is 274.9 K. The outside surface temperature is 297.1 K. A total of 14.65 W. heat must be removed from the bath by the cooling coil. How many m of tubing are needed? The thermal conductivity is 0.151W/m.K.
- 19. (a) The O₂ (a) is diffusing through CO(B) under standard conditions CO4- App with CO non diffusing. The total pressure is 1 x 10⁵ N/m² and temperature is 0°c. The partial pressure of O₂ at two planes, 2.0 mm apart is 1300 and 6500 N/m2. The diffusivity of oxygen in CO is D_{AB} = 1.87x10⁻⁵m²/sec. Calculate the rate of diffusion of O₂ in kmole/m².sec.

Or

- (b) The solute HCl (A) is diffusing through a thin film of water (B) 2.0 CO4- App mm thick at 283°K. The concentration of HCl at point (1) at one boundary of the film is 12 wt. % HCl (ρ1 = 1061 kg/m³) and the other boundary at point (2) is 6 wt % HCl (ρ2=1030 kg/m³). The diffusion co. efficient of HCl in water is 2.5 x 10 ⁻⁹ m2/sec. Assuming steady state conditions prevail and the boundary is impermeable to water, calculate the flux of HCl in Kmole/m².sec.
- 20. (a) Arrive the equation $W_A=WL_cA_o\sqrt{4D_{AB}}$ $V_{max}/\pi L$ for forced CO5-App (16) convection in falling liquid film.

Or

(b) Explain in detail about diffusion in laminar falling film. CO5- U (16)

(16)