A		Reg. No. :										
Question Paper Code: 95903												
B.E./B.Tech. DEGREE EXAMINATION, NOV 2022												
	Fifth Semester											
Chemical Engineering												
19UCH503 - CHEMICAL REACTION ENGINEERING I												
		(Regula	tions 20	19)								
Dur	Duration: Three hours Maximum: 100 Marks								larks			
		Answer Al	LL Ques	stions								
		PART A - (10	x 1 = 1	0 Mai	rks)							
1.	1. The rate constant for a first order reactionCO1- R							01- R				
	(a) depends on unit of time											
	(b) has units of reciprocal time											
	(c) does not change on changing the concentration units											
	(d) all of the above.											
2.	2. A certain first order reaction is half completed in 23 minutes. The rate CO2- App constant for the reaction must be							Арр				
	(a) 0.03 s^{-1} (b) 0	¹ (b) 0.030 min^{-1} (c) 0.030 hr^{-1} (d)			(d) 0	0.110 min ⁻¹						
3.	B. For identical feed composition ,flow rate , conversion and for zero order CO1- R reactions the ratio of the volume of mixed reactor to the volume of PFR is											
	(a) 0 (b)) 1	c) <	1					(d) >	>1		
4.	4. For identical feed composition and flow rate, N plug flow reactors in CO1- R series with a total volume V gives the same conversion as a single						01- R					
	(a) plug flow reactor of volume V											
	(b) CSTR of volume V											
	(c) plug flow reactor of volume V/N											
	(d) plug flow reactor of volume NV											

For any reaction the maximum attainable product in a plug flow reactor is	e concentration of desired	CO1- R				
(a) always lower than that in a MFR	(b) always higher than that in a MFR	_				
(c) always same that in a MFR	(d) None of the above					
the r_R/r_S when a and b are positive we have to maintain the						
(a) low respectively	(b) high and low respectively					
(c) high respectively	(d) low and high respectively					
Estimate equilibrium constant (k_2) for a reaction with $k_1=30.8$, $\Delta H_R^o=$ - CO2- App 10938 cal/mol, for T ₁ and T ₂ as 298 and 600 respectively						
(a) $3.15*10^{-3}$ (b) $2.83*10^{-3}$	(c) $4.0*10^{-2}$ (d) $1.5*10^{-3}$					
For an ideal gas, fugacity is equal to		CO1- R				
(a) temperature (b) pressure	(c) concentration (d) none of the	e above				
In which reactor distribution of residence tin reactor happens	nes of fluid within the	CO1- R				
(a) Batch reactor	(b) MFR					
(c) Plug flow reactor						
The total area under E curve $\int E dt =$		CO3- Ana				
(a) 0 (b) 2	(c) 1 (d) α					
PART – B (5 x	2= 10 Marks)					
Give the performance equation for a constant volume batch reactor.						
What are continuous reactors? Give examples.						
Give the expression for overall fractional yield for N mixed flow reactors in CO1-U series.						
Define optimum temperature progression.		CO1- U				
What is residence time distribution in a reactor?						
PART – C (5	x 16= 80 Marks)					
(a) Discuss in detail about integral and c analyze rate data.	differential method used to CO1-U	(16)				
	product in a plug flow reactor is (a) always lower than that in a MFR (c) always same that in a MFR For the desired product formation $r_R/r_s = k$ the r_R/r_s when a and b are positive concentration of A and B as (a) low respectively (c) high respectively (c) high respectively Estimate equilibrium constant (k_2) for a reac 10938 cal/mol, for T ₁ and T ₂ as 298 and 600 (a) $3.15*10^{-3}$ (b) $2.83*10^{-3}$ For an ideal gas, fugacity is equal to (a) temperature (b) pressure In which reactor distribution of residence times reactor happens (a) Batch reactor (c) Plug flow reactor The total area under E curve $\int E dt =$ (a) 0 (b) 2 PART – B (5 x) Give the performance equation for a constant What are continuous reactors? Give examples Give the expression for overall fractional series. Define optimum temperature progression. What is residence time distribution in a reactor PART – C (5 (a) Discuss in detail about integral and constants (b) Discuss in detail about integral and constants (c) Plus flow is constants of the distribution in a reactor for a constants of the distribution in a reactor for the distribution in	(a) always lower than that in a MFR (b) always higher than that in a MFR (c) always same that in a MFR (d) None of the above For the desired product formation r $_{R}$ /r $_{S}$ = k1/k2.C $_{A}$ ^a .C $_{B}$ ^b , to maximize the r $_{R}$ /r $_{S}$ when a and b are positive we have to maintain the concentration of A and B as (a) low respectively (b) high and low respectively (c) high respectively (d) low and high respectively (c) high respectively (d) low and high respectively (c) high respectively (d) low and high respectively (a) 3.15×10^{-3} (b) 2.83×10^{-3} (c) 4.0×10^{-2} (d) 1.5×10^{-3} For an ideal gas, fugacity is equal to (a) temperature (b) pressure (c) concentration (d) none of the In which reactor distribution of residence times of fluid within the reactor happens (a) Batch reactor (b) MFR (c) Plug flow reactor (d) all of the above The total area under E curve f E dt = (a) 0 (b) 2 (c) 1 (d) α PART – B (5 x 2= 10 Marks) Give the performance equation for a constant volume batch reactor. What are continuous reactors? Give examples. Give the expression for overall fractional yield for N mixed flow reactors in series. Define optimum temperature progression. What is residence time distribution in a reactor? PART – C (5 x 16= 80 Marks) (a) Discuss in detail about integral and differential method used to COI-U				

Or

- (b) Write short notes on:
 - (i) Reaction mechanism
 - (ii) Rate law and rate equation
 - (iii) Order of reaction

17. (a) Discuss in detail about transition state theory. CO1- U (16)

Or

(b) Following results are obtained for the decomposition of nitrous CO2- App (16) oxide in contact with gold surface at 900°C. Show that the order of reaction is unity.

Time		15	30	45	65	80
(min)						
%	N2O	17	32	44.5	57	65
decompos						
ed						

18. (a) Describe in detail about constant volume batch reactor. CO3- Ana (16)

Or

- (b) The half life for the conversion of ammonium cynate into urea at CO2- App (16) 303 K at initial concentration of ammonium cynate of 0.1 mol/l and 0.2 mol/l are 1152 min and 568 min respectively. What is the order of the reaction?
- 19. (a) Derive the performance equation of PFR with graphical CO1-U (16) representation.

Or

(b) For the elementary liquid phase reaction A reversibly reacts with CO2- App (16) R construct a plot of equilibrium conversion as a function of temperature and conversion when pure A at a temperature of 27 ° C (300 K) is fed to the reactor.

Datas: $\Delta H_{fA} = -40000$ cal/mol

 ΔH_{fR} = - 60000 cal/mol C_{PA} = 50 cal/(mol.k), C_{PR} = 50 cal/mol .k K = 100000 at 298 K CO1-U (16)

20. (a) The standard heat of gas phase reaction at $25 \circ c$ (298k) CO2- App (16)A+B \rightarrow 2R is Δ H $^{\circ}$ R= Δ HR(298K) = -50000J Indicating that the reaction is strongly exothermic. it is planned to run this reaction at 1000°c. what is the value of heat of temperature? is the reaction still exothermic at 1000°c? Data: The mean/average Cp values between 25°c and 1000°c for the various reaction Components are: CpA=35J/(mol.k), CpB=45J/(mol.k), CpR=70J/(mol.k)Or (b) Discuss in detail about the adiabatic reactor. CO1- U (16)