A		Reg. No. :											
		Question Pap	er (Cod	e: 9	402	4						
	B.E./B.Tech. DEGREE EXAMINATION, NOV 2022												
	Fourth Semester												
	Bio Medical Engineering												
	19UMA424 - Probability and Inferential Statistics												
		(Common to I	Bio T	Techr	nolog	gy)							
		(Regulat	ions	2019))								
Dur	ation: Three hours							Max	kimu	m: 1	00 M	larks	
		Answer AI	LL Q	uest	ions								
		PART A - (10	x 1 =	= 10	Mar	ks)							
1.	The mean of the rando	om variable is denote	ed by	r								CC)6-R
	(a) E(X)	(b) $E(X^2)$		(c)	0					(0	l) 1		
2.	Probability of sure eve	ent is										CC)6-R
	(a) 0	(b) 1		(c)	2					(0	l)10		
3.	The Conditional densi	ty function of Y giv	en X	C is								CO	5-U
	(a) f(x)	(b) f (y/x)		(c)	f (<i>x</i>	/y)				(d	l) f(y	r)	
4.	The marginal density	function of X is										CC	96-R
	(a) f(y)	(b) f(x,y)		(c)	f(x)					(0	l) f (x/y)	
5.	If the Random Process $R(\tau) = 16 + 9e^{- \tau }$ Then	ss $\{X(t)\}$ with mean the Variance of the	n ha proc	s Au cess i	ito c s	orrel	atior	n fun	ictio	1	C	03-	App
	(a) 16	(b)25		(c)	6				(d) 9)			
6.	Autocorrelation functi	on is maximum at τ	=									CC)6-R
	(a) 0	(b)1		(c)	-1					(0	∞ (l		
7.	The system is said to b	be stable if										CC	96-R
	(a) $\int_{-\infty}^{\infty} h(t) dt < \infty$	$\left(\mathbf{b}\right)\int_{-\infty}^{\infty}h(t) dt > \infty$	(c)	$\int_{-\infty}^{\infty} h(t)$	t) dt	> 0	(d)	Non	e of	the a	ibove	e	
8.	If $S_{xx}(\omega)$ and $S_{yy}(\omega)$ a ω) is the transfer func	<i>re</i> the input and outp tion then	ut po	ower	spec	tral	densi	ity aı	nd H	(CC)6-R

	(a) <i>s</i>	$S_{XX}(\tau) = \left H(\omega)\right ^2 S_{YY}(\omega)$		(b) $S_{XY}(\tau) = \left H(\omega) \right ^2 S$	$T_{XX}(\omega)$				
	(c) <i>s</i>	$_{YY}(\omega) = \left H(\omega) \right ^2 S_{XX}(\omega)$		(d) None of the ab	ove				
9.	Larg	ge sample size is				(C O6- U		
	(a) 3	80 (b)	>30	(c)<30	(d) No	one of the ab	ove		
10.	The	degrees of freedom for	Binomial distributi	on is		(CO6-U		
	(a)	(n -1)(n-2) (b)	n -2	(c) $(n-1)(n-3)$		(d) n -	-1		
			PART – B (5 x 2=	= 10Marks)					
11.	If X	is geometric variate the	en find P(X is odd).			CO	1-App		
12.	The P(x,	joint probability y) = kxy x = 1,2,3; y = 1	y mass func ,2,3 Determine the	tion of (X, value of constant k.	Y)	is CC	2-App		
13.	Prov	We that $ R_{xx}(\tau) \leq R_{xx}(0)$				(CO3-U		
14.	Calc with	culate the value of the s impulse response $h(t) =$	system transfer fun = e ^{-3t} U(t).	ction, if the input of	the sy	rstem (CO4-U		
15.	Give	e two types of errors in	testing a statistical	hypothesis CO2-U					
			PART - C (5 x)	16= 80Marks)					
16.	(a)	Let X be a continuous f(X) =KX(2-X) : 0 < 2 (iv) distribution function	random variable w X < 2, Find (i) K (i on of the random va Or	ith probability funct i) Mean (iii) Varian ariable X.	ion ce	CO1-App	(16)		
	(b)	(i) If $f(x) = \begin{cases} \frac{k}{1+x^2}, -\infty \\ o, else \end{cases}$	$x < \infty$ is the Proef	bability Density Fu	nction	CO1- App	(8)		
		of a Random variable f	X, (i) Find	K (ii) distrib	oution				
		(ii) State and Prove the Property.	e memory less prop	erty for an Exponen	tial	CO1- App	(8)		
17.	(a)	(i) If X and Y are two mass function $f(x, y)$	o random variables $=\frac{(2x+y)}{27}, x=0,$	s having joint proba 1, 2 and $y = 0, 1, 2$	ability 2 find	CO2-App	(8)		
		the marginal distribution (ii) If the joint probability $f(x,y) = e^{-(x+y)}$, $x > 0$,	on of X and Y lity density function y > 0 Are X & Y Or	n of X&Y is given b independent.	у	CO2-App	(8)		

(b) (i) If X and Y are two random variables having joint probability CO2 -App (8) mass function $f(x, y) = \frac{(2x + y)}{27}$, x= 0, 1, 2 and y = 0, 1, 2 find the marginal distribution of X and Y

(ii) Obtain the Correlation coefficient for the following heights (in CO2 - App (8) inches) of fathers X and their sons Y.

Х	65	66	67	67	68	60	70	72
Y	67	68	65	68	72	72	69	71

18. (a) (i) Find the Average power of a process X(t) if its PSD is given by CO3-App (8) $S(\omega) = \frac{10 \omega^2 + 35}{(\omega^2 + 4)(\omega^2 + 9)}$

(ii) A stationary process has an autocorrelation function given by CO3-App (8)

 $R(\tau) = 25 + \frac{4}{1+6\tau^2}$ Find the Mean and Variance

(b) (i) If the Power spectral density of a WSS processes is given by CO3-App (8)

$$\mathbf{S}(\boldsymbol{\omega}) = \begin{cases} \frac{\mathbf{b}}{\mathbf{a}} (\mathbf{a} - |\boldsymbol{\omega}|) & ; & |\boldsymbol{\omega}| \leq \mathbf{a} \\ \mathbf{0} & ; & |\boldsymbol{\omega}| > \mathbf{a} \end{cases}$$

Find the auto correlation function of the Process.

(ii) Find power spectral densities of the following auto correlation CO3-App (8) function $R(\tau) = e^{\frac{-a^2\tau^2}{2}}$

19. (a) A random process X (t) having the autocorrelation function CO4-App (16) $R_{xx} (\tau) = a e^{-2|\tau|}$ Where 'a' is a constant is applied to the input of the system with impulse responseh (t) = e^{-3t} U(t). Find the Power Spectral Density of the output Y (t) and find the autocorrelation of the output Y (t).

Or

(b) If X (t) is a WSS process and if

$$Y(t) = \int_{-\infty}^{\infty} h(u) X(t-u) du \text{ then}$$
(i).R _{xy}(τ) = R _{xx}(τ) * h(τ) (ii).R _{yy}(τ) = R _{xy}(τ) * h(- τ)
(iii).S _{xy}(ω) = S _{xx}(ω) * H(ω) (iv).S _{yy}(ω) = S _{xx}(ω) * $|H(\omega)|^2$

20. (a) (i) Five coins are tossed 256 times. The number of heads observed CO5-Ana (8) is given below. Examine if the coins are unbiased, by employing χ^2 goodness of fit.

No of Heads	0	1	2	3	4	5
Frequency	5	35	75	84	45	12

(ii) The following data are collected on two characters. CO5-Ana (8)

	Skilled	Non Skilled
Male	40	20
Female	10	30

Using chi-square test to find is there any relation between skilled and Non Skilled

Or

(b) (i) A company keeps records of accidents. During a recent safety CO5- Ana (8) review, a random sample of 60 accidents was selected and classifieds by the day of the week on which they occurred.

Days	Mon	Tue	Wed	Thu	Fri
No.of. accidents	8	12	9	14	17

(ii) Two random samples gave the following results:

Samples	Size	Sample	Sum of the squares of
		Mean	deviation from the mean
1	10	15	90
2	12	14	108

Examine whether the samples come from the same normal population

CO5- Ana (8)

4