A			Reg. No. :											
Question Paper Code: 94D05														
B.E. / B.Tech. DEGREE EXAMINATION, NOV 2022														
			Fourth	Sem	ester									
Biotechnology														
19UBT405- Fluid Particle Mechanics and Mechanical Operations														
(Regulation 2019)														
Duration: Three hours Maximum: 100 Marks													S	
Answer ALL Questions														
			PART A - (10	x 2 =	= 20	Mar	ks)							
1.	Differentiate specific volume and specific weight.											С	O3-	Ana
2.	State Newton's Law of Viscosity.												CO	- U
3.	Define minimum fluidization velocity.												CO2	2- U
4.	Define fluidization.												CO2	2- U
5.	Classify the types of forces applied inn size reduction of particles.											С	O3-	Ana
6.	State Bond's law.										CO1- U			
7.	Sketch the model of an agitator.										O2	App		
8.	Ske	tch the flow patte	ern when the impeller	is pl	aced	off-	cente	r of	an ag	gitato	or.	С	O2	App
9.	Prec	lict the criteria for	or selection of filter m	edia.									CO	4- E
10.	Define the time of drying.											- U		
			PART – C	(5 x 1	16=8	30 M	arks))						
11.	(a)	Explain with Rotameter and	schematic sketch- discuss the advantage Or	the s and	princ l disa	ciple dvar	, wo ntage	orkin s of	g o it.	f C	01-	U		(16)
	(b)	Explain with Bourdon gauge it.	schematic sketch- and discuss the adva	the intage	princ es an	ciple d dis	, wo sadva	orkin antag	g o ges o	f C f	01-	U		(16)
12.	(a)	Illustrate the me explain its type	echanism of fluidizati s.	ion a	nalyz	zing	the fa	actor	s and	d C	02-	Арр		(16)

1

- (b) Illustrate the principle, working of peristaltic pump with a neat CO2- App (16)elucidate its advantages, sketch and disadvantages and application.
- 13. (a) Analyze the nature of the balls used in ball-mill. Elucidate the CO3- Ana (16)principle, working, advantages, disadvantages and applications of ball-mill with a neat sketch.

Or

- (b) Illustrate the principle, working of hammer-mill with a neat CO2-App (16)sketch and elucidate its advantages, disadvantages and application.
- The power required by an agitator in the tank is a function of the CO4- E (16)14. (a) following variables. Diameter of the agitator, number of rotations of the impellor per unit time, viscosity of liquid, density of liquid. From dimensional analysis using Buckingham's method, obtain a relation between power and the four variables. From dimensional analysis using Buckingham's method, obtain a relation between power and the four variables. From dimensional analysis using Buckingham's theorem, obtain a relation between power and the four variables. Or
 - (b) Explain the Buckingham's theorem and derive a relation between CO4- E (16)pressure drop and four variables d (diameter of the particle), v (velocity of the particle), ρ (density of the particle), μ (viscosity of the particle) using the same.
- 15 (a) Explain the mechanism and application of batch dryers with CO2-U (16)example.

2

Or

(b) Elucidate the principle of sedimentation and the regimes of CO2-U (16)settling.

Or