C Reg. No. :												
--------------	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code: U2E05

B.E./B.Tech. DEGREE EXAMINATION, NOV 2022

Second Semester

		Secol	ild Semester				
		Artificial Intelli	gence & Data Sc	ience			
		21UAD205- I	Digital Logic Des	ign			
		(Regu	lations 2021)				
Dur	ration: Three hours			Maximum: 100	Marks		
		Answer	All Questions				
		PART A -	(5x 1 = 5 Marks))			
1.	Conversion of de	ecimal number 5610 to	it's binary numbe	er equivalent is	CO1- R		
	(a) 1100112	(b) 110011102	(c) 1110002	(d) 111112			
2.	How many full adder required to design 4 bit binary parallel adder CO2-						
	(a) 1	(b) 2	(c) 3	(d) 4			
3.	Which of the following blem?	ollowing flip-flops is	free from the ra	ace around the	CO1- R		
	(a) T flip-flop	(b) SR flip-flop	(c) Master-Slav	e Flip-flop (d) flip-flo	pp		
4.	In synchronous c	eircuit, the present state	is determined by	7	CO1- R		
	(a) unclocked flip	p-flops (b) clocked	l flip-flops	(c) flip-flops (d) la	itches		
5.	For programmab	le logic functions, whic	h type of PLD sh	ould be used?	CO1- U		
	(a) PLA	(b) PAL	(c) CPLD	(d) SLD			
		PART – B	$(5 \times 3 = 15 \text{ Marks})$)			
6.	Subtract the follo	nt C	CO3- App				
7	Write the gray code and excess -3 code for the binary code 1010						

6. Subtract the following 11011-11001 using 2's complement CO3- App

7. Write the gray code and excess -3 code for the binary code 1010 CO3- App

8. Define Priority encoder with truth table and circuit CO1- R

9. List the basic types of shift registers in terms of data movement. CO1- R

10. Given F (A, B, C) = $\sum m(1, 5, 6, 7)$.

CO3- App

Realize the hazard free circuit for the above function.

$$PART - C (5 \times 16 = 80 \text{ Marks})$$

11. (a) Design K map and minimize using K map method. Implement it using NAND gates

CO3-App (16)

 $F(A,B,C,D) = \pi (0,1,4,5,6,8,9,12,13,14)$

Or

(b) Reduce the following equation using Quine McClucky method of minimization

CO3-App (16)

F(A,B,C,D) = m(0,1,3,4,5,7,10,13,14,15)

12. (a) Design a circuit for parallel addition and subtraction

CO3-App (16)

Or

(b) Design a circuit for priority encoder

CO3-App (16)

13. (a) Using SR flip flops, design a parallel counter which counts in CO3-App (16) sequence

000,111,101,110,001,010,000

Or

- (b) Design MOD-10 Synchronous counter using JK flip-flops. V CO3-App (16) execution table and State table
- 14. (a) Give hazard– free realization for the following Boolean function $f(A,B,C,D) = \pi (0,2,6,7,8,10,12)$ (16)

Or

- (b) Give hazard– free realization for the following Boolean function $f(A,B,C,D) = \pi (3,4,7,8,9,12,15)$ (16)
- 15. (a) Explain in detail about the classification of memories with neat CO3-App (16) diagram?

Or

(b) Implement the following functions using PLA.

CO3-App (16)

F1 (A, B, C) = Σ m (1, 2, 4, 6)

 $F2 (A, B, C) = \Sigma m (0, 1, 6, 7)$

F3 (A, B, C) = Σ m (2, 6)