Reg. No.:						

Question Paper Code: U3A03

B.E./B.Tech. DEGREE EXAMINATION, NOV 2022

Third Semester

Agricultural Engineering

	21UAG303	– INTRODUCTION 7	TO ENGINEERING MEC	CHANICS					
		(Regula	tions 2021)						
Dur	ation: Three hours		Maximum: 100 Marks						
		Answer Al	LL Questions						
		PART A - (10	x 1 = 10 Marks						
1.	The unit of weight _			CO2- U	J				
	(a) kilogram	(b) Newton	(c)Watt	(d)Gram					
2. According to the Newton's First Law, The Resultant R is									
	(a) $R \neq 0$	(b) $R = 1$	(c) R is infinitive	(d) 0					
3. Following is not a scalar quantity?									
	(a) Density	(b) mass	(c) Volume	(d) Acceleration					
4.	Forces passing throu	gh a common point are	e known as	CO2- U	J				
	(a) collinear forces	(b) Concurrent force	s (c) Multiple forces	(d) Scalar forces					
5.	Two dimensional ele	ment the G is		CO2- U	J				
	(a) Centre of gravity	(b) Centre of the a	rea (c) Centroid	(d) Cycloid					
6.	Polar Moment of Ine	rtia follows	_	CO2- U	J				
	(a) Parallel Axis The	orem	(b) Perpendicular Axis Theorem						
	(c) Centroidal Axis T	Theorem	(d) Radius of Gyration						
7.	Two non-collinear pa	arallel equal forces acti	ing in opposite direction	CO2- U	J				
(a) Balance each other			(b) constitute a moment						
	(c) Constitute a coup	le	(d) constitute a moment of couple						
8.	The maximum fricti increase.	ional force increase a	s theforce betw	reen the bodies CO2-U	J				
	(a) Parallel	(b) inclined	(c) normal	(d) gravitational					

Frictional force encountered after commencement of motion is called 9.

CO2-U

- (a) Post friction
- (b)Limiting friction
- (c)Angle of friction
- (d) dynamic friction.

10. Coulomb friction is the friction between

CO2-U

- (a) Bodies having relative motion
- (b) two dry surfaces

(c) Two lubricated surfaces

(d) solids and liquids


$$PART - B$$
 (5 x 2= 10Marks)

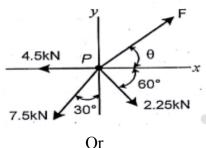
Show the free body diagram with example 11.

CO2- U

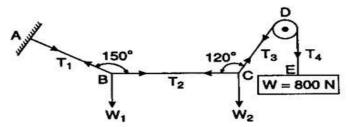
Solve the moment of the 100 N force about point A and B

CO₃- App

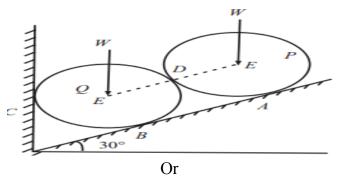
13. Show product of inertia with formula... CO2-U

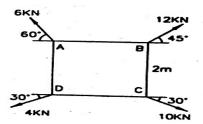

Compare and contrast the impact and elastic impact. 14.

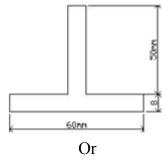
CO2- U

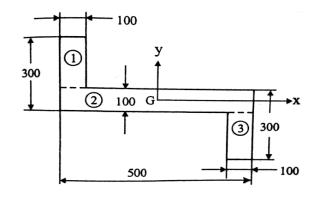

Illustrate Coulomb's laws of dry friction.

CO2-U


(a) Compute the magnitude and angle and F so that particle shown in CO3-App (16)figure, is in Equilibrium.


(b) A system of connected flexible cable shown in Figure below is CO3-App (16)supporting two vertical forces W₁,W₂ at points B&C .Manipulate the forces in various segments of the cable


17. (a) Two identical rollers, each of weight W = 50N are supported by an CO3-App inclined plane and a vertical wall as shown in figure below . Solve the reactions at the point of supports .Assume all the surfaces to be smooth.


(b) Four forces of magnitude and direction acting on a square ABCD CO3-App of side 2 m are shown in the figure. Solve the resultant in magnitude and direction and also locate its point of application with respect to the sides AB and AD

18. (a) Solve the principal moments of inertia and find location of CO3-App (16) principal axes of surface shown in figure

(b) Compute Moment of Inertia about the co-ordinate axes of plane CO3- App area shown in fig. Also find Polar Moment of Inertia. All the dimensions are in 'mm'

19. (a) A Burgalr's car had a start with acceleration of 2 m/s 2. A police CO3- App vigilant party came after 5 second and continued to chase the Burgalr's car with a uniform velocity of 20m/s. Find the time taken in which the police van will overtake the Burgalr's car?

Or

- (b) A car is moving with a velocity of 15m/sec. The car is brought to CO3- App rest by applying brakes in 5 seconds. Determine
 - (i) The retardation
 - (ii) Distance travelled by the car after applying brakes.
- 20. (a) A Uniform ladder of weight 1000 N and length 4 m rests on a CO3-App (16) horizontal ground and leans against a smoothe vertical wall. The ladder makes an angle of 60° with horizontal, when a man of weight 750 N stands on the ladder at a distance of 3 m from the top of the ladder, the ladder is at the point of sliding. Determine the Coefficient of friction between ladder and the floor.

Or

(b) A uniform ladder of weight 250N and length 7m is placed against a CO3- App vertical wall in a position where its inclination to the vertical is 30° . A man weight 800N climbs s the ladder. At what position will be induce slipping? Take coefficient of friction between the floor and ladder is μ =0.40 and that between the wall and ladder is μ =0.40.