	A
	•
Γ	•

Reg. No.:

Question Paper Code: U3026

B.E./B.Tech. DEGREE EXAMINATION, NOV 2022

Third Semester

Agriculture Engineering

21UMA326- TRANSFORM TECHNIQUES AND PARTIAL DIFFERENTIAL EQUATIONS (Common to Biomedical and Biotechnology Engineering) (Regulations 2021) Duration: Three hours Maximum: 100 Marks **Answer All Questions** PART A - (10x 1 = 10 Marks)The term $(a_1\cos x + b_1\sin x)$ in fourier series is called _____ 1. CO6-U (a) First harmonic (b) Second harmonic (c) Third harmonic (d) Fourier Coefficients Cos x is a periodic function with period _____ CO6- U (a) π (b) 2π (d) $2 \pi/3$ If F[f(x)] = f(s) then the function is said to be CO6- U (a) Odd (b) Even (c) Self-Reciprocal (d) Periodic If F[f(x)] = f(s) then F[f(ax)] =CO2- App (a) $\frac{1}{-a}F\left(\frac{s}{a}\right)$ (b) $\frac{1}{a}F\left(\frac{s}{a}\right)$ (c) $\frac{1}{|a|}F\left(\frac{s}{a}\right)$ (d) $\frac{1}{s}F\left(\frac{s}{a}\right)$

5. If $Z\{f(t)\} = F(Z)$, then $Z\{e^{-at}f(t)\} =$ _____

CO6- U

(a)F $[e^{aT}]$ (b)F $[Ze^{aT}]$ (c)F $[Ze^{-aT}]$

 $(d)F[e^{-aT}]$

6. Z[n f(n)] =_____

CO6- U

(a) $-z \frac{d}{dz} F(Z)$ (b) $z \frac{d}{dz} F(Z)$ (c) $\frac{d}{dz} Z$

 $\left(\mathbf{d}\right)_{z}^{n} \frac{d}{dz} F(Z)$

7. The PDE obtained from z = (x+a)(y+b) is ___.

CO4- App

(a) 3z = px + qy (b) py - qx = 0 (c) z = pq

(d) px+qy=0

8. The particular integral of $(D^2 - 4DD' + 3D'^2)$ $z = e^{x+y}$ is _____ CO4- App

(a)
$$\frac{xe^{x+y}}{2}$$
 (b) $-\frac{xe^{x+y}}{2}$ (iii) $\frac{x^2e^{x+y}}{2}$

9. Classify the equation y2uxx+uyy = 0 is _____ CO6- U

(a) parabolic (b) hyperbolic (c) elliptic (d) cyclic

10. An insulated rod of length 60 cm has its ends at A and B kept at 20oC and CO5- App 80oC respectively, then its steady state solution is

(a)
$$x-20$$
 (b) $4x+20$ (c) $x+20$ (d) $x+60$

 $PART - B (5 \times 2 = 10Marks)$

11. Find a_0 and a_n in the Fourier series of $f(x) = x + x^3$ in $(-\pi,\pi)$ CO1- App

12. Find the Fourier cosine transform of
$$f(x) = \frac{1}{1+x^2}$$
 CO2- App

13. Find $Z\left[\sin\left(\frac{n\pi}{2}\right)\right]$ CO3- App

14. Solve:
$$(D^2 - 4DD' + 4D^2)Z = \sin(x + y)$$
.

15. Write the three Possible solutions of the one dimensional wave equations CO5- U

$$PART - C$$
 (5 x 16= 80Marks)

16. (a) (i) Find the Fourier series of
$$f(x) = \begin{cases} -1+x, & -\pi < x < 0 \\ 1+x, & 0 < x < \pi \end{cases}$$
 CO1 -App (8)

periodicity 2π .

(ii) Find the Half range cosine series for $f(x) = x(\pi - x)$ in $(0, \pi)$. CO1 -App (8)

Deduce that
$$\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots = \frac{\pi^4}{90}$$

(b) The table of values of the function y = f(x) is given below: CO1 -App (16)

X	0	$\pi/3$	$^{2\pi}/_{3}$	π	$4\pi/_{3}$	$5\pi/_{3}$	2π
y	1.	1.4	1.9	1.	1.5	1.2	1.
:	0			7			0

Find a Fourier series upto the third harmonic for f(x) in terms of x.

17. (a) Find the Fourier transform of $f(x) = \begin{cases} a - |x|, & \text{if } |x| \le a \\ 0 & \text{if } |x| > a \end{cases}$ and CO2 -App (16)

hence deduce that
$$(i) \int_{0}^{\infty} \left(\frac{\sin t}{t}\right)^{2} dt (ii) \int_{0}^{\infty} \left(\frac{\sin t}{t}\right)^{4} dt$$

(b) Evaluate (i)
$$\int_{0}^{\infty} \frac{x^{2} dx}{(x^{2} + a^{2})(x^{2} + b^{2})}$$
 (ii) Evaluate $\int_{0}^{\infty} \frac{dx}{(x^{2} + 49)^{2}}$ CO2 -App (16)

- 18. (a) CO3- App (8)(i) Solve the difference equation $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$ given that $y_0 = 0$, $y_1 = 0$
 - CO₃- App (8)(ii) Using Convolution theorem find $z^{-1} \left| \frac{8z^2}{(4z-3)(2z+1)} \right|$

Or

- (b) CO₃- App (8)(i) Solve the difference equation $y_{n+2} + 4y_{n+1} + 3y_n = 2^n$ given that $y_0 = 0$, $y_1 = 0$
 - (ii) Evaluate $Z[r^n \cos n\theta]$ and $Z[r^n \sin n\theta]$. CO₃- App (8)
- 19. (a) (i) Solve $x(z^2 y^2)p + y(x^2 z^2)q = z(y^2 x^2)$ CO4-App (8)
 - (ii) Solve $(D^2 DD' 2D'^2)z = 2x + 3y + e^{3x+4y}$ CO4-App (8)

- (b) (i) Solve x(y-z)p + y(z-x)q = z(x-y)CO4-App (8)
 - (ii) Solve $(D^2 7DD' + 6D^2)z = e^{2x+y}$ CO4-App (8)
- 20. (a) A String is stretched and fastened to two points 1 apart. Motion is CO5- App (16)started by displacing the string into the form $y=K(1x-x^2)$ from which it is released at t=0. Find the displacement of any point at a distance 'x' at any time 't'.
 - (b) A tightly String with fixed end points x=0 and x=1 is initially at CO5- App (16)rest in its equilibrium position. If its set vibrating giving each point at velocity $\lambda(1x-x^2)$. Find the displacement.