A		Reg. No. :										
Question Paper Code: U2M07												
B.E./B.Tech. DEGREE EXAMINATION, NOV 2022												
Second Semester												
Agriculture Engineering												
21UMA207- Calculus Complex analysis and Transform Techniques												
(Regulations 2021)												
(Common to bio medical and biotechnology engineering branches)												
Dur	ation: Three hours				Maximu	m: 100 N	larks					
Answer ALL Questions												
PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$												
1.	The order and degree of $(y'')^2 + 2(y'')^3 + y = 0$ is CO1-						CO1-A	vpp				
	(a) 3,2	(b)2,3	(c) 3,3			(d) 2,2						
2.	The solution of $(D^3 + D^2 - D - 1)y = 0$ is CO6-						5-U					
	(a) $Ae^x + Bxe^x + Cx^2$	(a) $Ae^{x} + Bxe^{x} + Cx^{2}e^{x}$ (b) $(Ax + B)e^{x}$										
	(c) $e^{-x} + (\cos 2x + i \sin 2x)$	$(B)e^{-x} +$	$-C e^{x}$									
3.	Divergence of vector			С	02-Aj	pp						
	(a) 8	(b) 4	(c) -3			(d) 0						
4.	If $\varphi = x^2 + y^2 - z - 10$ then $ \nabla \varphi $ at (1, 1, 1) is CO2-App							vpp				
	(a) $2(\bar{i} + \bar{j} + \bar{k})$	(b) $2\vec{i} + 2\vec{j} - \vec{k}$	(c) 3		(d) 9							
5.	The critical point of the transformation $w = z + \frac{1}{z}$ are CO					CO6	- U					
	(a) ±1	(b) ±2	(c) $\pm i$		(d) – <i>i</i>							
6.	The mapping $w = z^2$	is not conformal at					CO6	- U				
	(a) 0	(b) -1	(c) 1		(d) 2							
7.	Simple pole is a pole	Simple pole is a pole of order CO6-U						5-U				
	(a) 1	(a) 2	(a) 3		(a) 4							

8.	The poles of z cot z is											
	(a)	0	(b) $\pm n\pi$	(c) 1	(d) π							
9.	L (s	in h at) =				CO6-U						
	(a) -	$\frac{s}{s^2 - a^2}$	$(b)\frac{a}{s^2-a^2}$	$(c)\frac{s}{s^2+a^2}$	$(d) \ \frac{a}{s^2 + a^2}$							
10.	Sin	Sin t is a periodic function with period				CO6-U						
	(a) 2	2π	(b) π	(c) $\pi / 2$	(d) π / 3							
PART - B (5 x 2= 10 Marks)												
11.	Find the Particular Integral of $(D^2 + 4D + 4)y = \frac{e^{-2x}}{x^2}$ CO1-App											
12.	Finc	l the Directional d		CO2-App								
	dire	ction $2\vec{i} + 3\vec{j} + 4\vec{k}$.										
13.	Finc	I the fixed point of	CO3-App									
14.	Evaluate $\int_{c} \frac{e^{-z}}{z+1} dz$ where C is $ z = \frac{1}{2}$ using Cauchy integral formula					CO4-App						
15.	Veri	ify initial value the	CO5-App									
			PART – C (5	x 16= 80Marks)								
16.	(a)	a) (i) Using method of variation of parameters solve $(D^2 + a^2)y = cosec ax$.		CO1-A _I	op (8)							
	(ii) Suppose a material decays at a rate proportional to the quantity of the material and there were 2200 grams 10 years ago If there are 2000 grams now, what is the half-life? Or					pp (8)						
	(b)				CO1- A	pp (8)						
		(ii) Solve: $(D^2 -$	$4D+3)y = \sin 3x + e^{2x}$		CO1- A	pp (8)						
17.	(a)	where S is the su	vergence theorem for h rface of the cuboid for y = b, z = 0 & z = c.		CO2-Aj	op (16)						

2

U2M07

- (b) Verify Green's theorem for $\int x^2 dx + xy dy$, where C is bounded by CO2 -App (16) C x = 0, x = a, y = 0, y = a
- 18. (a) (i) Find the image of |z - 3i| = 3 under the transformation $w = \frac{1}{z}$ CO3-App (8) (ii) If f(z) = u +iv is a regular function of z in a domain D the CO3-App (8) following relation hold in D. $\nabla^2 |f(z)|^2 = 4 |f'(z)|^2$ Or
 - (b) (i) Find the image of |z-1| = 1 under the transformation $w = \frac{1}{z}$ CO3-App (8) (ii) If f(z) is analytic whose real part is constant must itself be a CO3-App (8) constant.

19. (a)
(i) Evaluate
$$f(z) = \int_{C} \frac{\cos \pi z^{2} + \sin \pi z^{2}}{(z-1)(z-2)} dz$$
 by using Cauchy's
Integral formula where C is $|z| = 3$
CO4-App (8)

(ii) Expand
$$\frac{z-1}{(z+2)(z+3)}$$
 as Laurent's series valid in the region
 $2 < |z| < 3$
(8)

(b) Using Contour integration, to prove

$$\int_{-\infty}^{\infty} \frac{x^2}{(x^2 + a^2)(x^2 + b^2)} dx = \frac{\pi}{a + b} a > b > 0$$
(16)

20. (a) (i) Solve the differential equation $\frac{d^2y}{dt^2} + y = \sin 2t$; y(0) = CO5-App (8) 0; y'(0) = 0 by using Laplace transform method. (ii) Find the inverse Laplace Transform of $\frac{s+3}{(s+1)(s^2+2s+3)}$ CO5-App (8)

Or

(b)
(i) Find the Laplace transform of
$$f(t) = \begin{cases} \sin \omega t , \ 0 < t < \frac{\pi}{\omega} \\ 0 & , \frac{\pi}{\omega} < t < \frac{2\pi}{\omega} \end{cases}$$
(ii) Solve by using convolution theorem $L^{-1} \left[\frac{s}{(s^2 + a^2)(s^2 + b^2)} \right]$
(2) CO5-App (8)