A	Reg. No.:								
	Question Pap	er (Cod	e: 9	402	5			

B.E./B.Tech. DEGREE EXAMINATION, NOV 2022

Fourth Semester

Agriculture Engineering

		19UMA4	25 - Probabil	ity, Stati	stics and	l Numeri	cal Met	thods	
			(F	Regulatio	ons 2019)			
Dur	ation: Three	hours					Ma	ximum: 100 M	Marks
			Ans	wer ALI	Questic	ons			
			PART A	A - (10 x	1 = 10 N	Marks)			
1.	Which of th	e following	g discrete dist	ribution	has equa	ıl mean a	nd vari	ance?	CO6-R
	(a) Binomia	al	(b) Poisson		(c) (Gamma	((d) Uniform	
2.	The limiting	g form a Po	isson distribu	ition is					CO6-U
	(a) Geometric (b) Binomial				(c) N	Normal	((d) None of th	e above
3.	The degrees	of freedon	n in t-tests is						CO6-U
	(a) n-1		(b) n-2		(c) n	n-3	(d) n	ı - 4	
4.	Chi-square	test is very	popularly kn	own as a	test of				CO6-R
	(a) Independ	dent of attri	butes (b)	t- test	(c) I	-test	(d) go	oodness of fit	
5.	Latin square	e design is	a						CO6- U
	(a) One way	7	(b) Two wa	y	c) T	Three way	y	d) None of	these
6.	The science	of experin	nental designs	s is assoc	ciated wi	th the na	me		CO6-U
	(a) Latin squ	uare	(b) Latin c	ube	(c) F	RBD		(d) None of the	hese
7.	In Cubic Sp	line, M0=N	/In=	_					CO6-U
	(a) 1		(b) n		(c) 3			(d) 0	
8.		forward _intervals	interpolati	on fo	ormula	used	only	for	CO6-U
	(a) equal		(b) unequal		(c) equa	al and und	equal	(d) none of	these

9.	-	pezoidal rule is so oftrapezo	•	pproximates the integ	ral by th	ne (CO6-U
	(a) r	1	(b) n+1	(c) n-1	(d) 2r	1	
10.	In S	impson's 3/8 rule t	he number of subint	ervals should be		C	CO6-U
	(a) 1	multiple of 1	(b) multiple of 2	(c) multiple of 3	3	(d) All of th	nese
			PART - B (5	x 2= 10Marks)			
11.	A C	ontinuous random	variable with density	y function is given by		CO	1-App
	f(x)	$)=6x(1-x),0\leq x\leq$	1 Check the above is	PDF or not.			
12.	Giv	e two types of error	rs in testing a statisti	cal hypothesis		C	CO6-U
13.	sum	of squares of tre		vations involving 3 to of squares of total a ratio.			3-App
14.		e Lagranges interpo (X_2, Y_2) are given	olation formula for t	three set of values (X_0)	$(X_{0}, Y_{0}), (X_{0}, Y_{0})$	(X_1, Y_1)	CO6-U
15.	Eva	luate using two –po	oint Gaussian quadra	ature formula $\int_{-1}^{1} (3x^2 +$	$5x^4$) dx	СО	5-App
			PART – C ((5 x 16= 80Marks)			
16.	(a)	Define Gamma dand Hence find m		moment generating f	unction	CO1-App	(16)
	(b)		•	on for Binomial distr ction and hence find in		CO1- App	(8)
			onential distribution	State and Prove the m	nemory	CO1- App	(8)
17.	(a)	• •	•	es 9 and 7 from a norm		CO2-App	(8)

Sample I

Sample

II

(ii) Two horses A and B were tested according to time (in seconds) CO2-App to run on a particular track with the following results:

Horse A	28	30	32	33	33	29	34
Horse B	29	30	30	24	27	29	

Test whether horse A is running faster than B at 5% level...

Or

(b) (i) A company keeps records of accidents. During a recent safety CO2 -Ana review, a random sample of 60 accidents was selected and classifields by the day of the week on which they occurred.

Days	Mon	Tue	Wed	Thu	Fri
No.of. accidents	8	12	9	14	17

(ii) To verify whether a course in accounting improved CO2 -Ana performance, a similar test was given to 12 participants both before and after the course. The marks are:

Befor	44	40	61	52	32	44	70	41	67	72	53	72
e												
After	53	38	69	57	46	39	73	48	73	74	60	78

Was the course was useful?

18. (a) Analyze the variance in the latin square of yields (in kgs) paddy CO3-U (16) where P,Q,R,S denote the different methods of cultivation.

S122	P121	R123	Q122
Q124	R123	P122	S125
P120	Q119	S120	R121
R122	S123	Q121	P122

Or

(b) Four varieties A, B, C, D of a fertilizer are tested in a randomized CO3-App (16) block design with 4 replication. The plot yields in pounds are as follows.

	1	2	3	4
1	A(12)	D(20	C(16)	B(10
2	D(18)	A(14	B(11)	C(14
3	B(12)	C(15	D(19)	A(13
4	C(16)	B(11	A(15)	D(20

Analyze the experimental yield.

(8)

19. (a) (i) From the data given below, find the number of students whose CO4-App weight lies between 60-70 (8)

Weight in lbs	0-40	40-60	60-80	80-100	100-120
No. of Students	250	120	100	70	50

(ii) Using Lagrange's interpolation formula calculate the profit in CO4-App the year 2000 from (8)

year	1997	1999	2001	2002
Profit (Rs.in lakhs)	43	65	159	248

Or

(b) Fit a natural cubic spline for the following data

X	-1	0	1	2
Y	-1	1	3	35

20. (a) Evaluate $\int_{0}^{1} \frac{dx}{1+x}$ by using Romberg's method correct to 3 decimal CO5-App (16) places

Or

(b) Evaluate $\int_{0}^{1} \int_{0}^{1} e^{-(x+y)} dxdy$ by (i). Trapezoidal (ii) Simpson's rule by taking h=k=0.5

CO4-App

(16)