A
\mathbf{A}
_

Reg. No.:					

Question Paper Code: 99A03

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2022

Elective

Agricultural Engineering

19UAG903 - Watershed Planning and Management

		(Regulatio	n 2019)				
Dur	ation: Three hours		Maximum: 100 Marks				
		Answer ALL	Questions				
		PART A - (10 x	1 = 10 Marks)				
1.	Dimension of relief i	S		CO1- U			
	(a) L^{-1}	(b) L	(c) L-2	(d) L^{-2}			
2.	The shape of falling	limbis		CO1- U			
	(a) Convex	(b)concave	(c) both (a) & (b)	(d) none of the above			
3.	A high value of bifur	cation ratio is found intl	he	CO1- U			
	(a) flat land watershe	d (b) hilly watershed	d (c) both (a) & (b)	(d) none of the above			
4.	A hydrograph is the	plot of		CO2- App			
(a) discharge rate and time			(b) rainfall and time				
	(c) rainfall volume ar	nd time	(d) none of the above				
5.	Size of gully depen	ds on		CO1- U			
	(a) catchment area	(b)runoff rate	(c) soil type	(d) all the above			
6.	Inactive gullies are			CO1- U			
	(a) stabilized gullies	(b) eroded gulli	es (c) without flow	(d) all the above			
7.	The drainage divide	may be the		CO1- U			
	(a) valley	(b) ridge	(c) forest land (c	d) both (a) and (b)			
8.	The kind of spillway	used in farm pond as m	echanical spillway, is	CO1- U			
	(a) drop structure	(b) chute spillway	(c)drop inlet spillw	ay (d) all the above			

9.	The watershed is synonymous to							
	(a) d	rainage basin (b) drainage area (c) catchment	(d) all the abo	ve				
10.	In In	dia, total number of soil conservation regions is		CO3 -U				
	(a) 1	0 (b) 7 (c) 5	(d) 8					
		$PART - B (5 \times 2 = 10 Marks)$						
11.	Expl	ain the land capability sub-classes?		CO1- U				
12.	List	out the stages of watershed program evaluation?	CO2- App					
13.	Expl	ain classification of watershed?	CO1- U					
14.	Expl	ain water conservation practices ridges and furrows?	CO1- U					
15.	Writ	e various objectives for watershed development?	CO1-					
		PART – C (5 x 16= 80Marks)						
16.	(a)	In detail explain about the process of watershed planning. Or	CO2- App	(16)				
	(b)	Briefly explain principles and action plan for watershe management and development.	d CO1-U	(16)				
17.	(a)	Briefly explain Environmental, community and financibenefits of watershed planning. Or	al CO2 -U	(16)				
	(b)	In detail explain about indicators of watershed programevaluation.	n CO2 -App	(16)				
18.	(a)	How will you design water conservation practices in irrigate lands? Give suitable illustrations.	ed CO3-App	(16)				
	(b)	Or In detail explain about the temporary gully control structure (TGCS) with neat sketches.	es CO1-U	(16)				
19.	(a)	Briefly explain about soil conservation practices? Give suitab illustrations.	le CO2-App	(16)				
	(b)	Or In detail explain about design and components of Farm pond.	CO3 -App	(16)				
20.	(a)	Briefly explain about Watershed modeling? Give suitab flowchart.	le CO3 -App	(16)				
	(b)	Or In detail explain about river valley project	CO2 Am	(16)				
	(b)	In detail explain about river valley project.	CO2- App	(16)				