A		Reg. No. :							
		Question Pape	r Code	: 52003	3				
	B.E. / B.	Tech. DEGREE E2	XAMIN	ATION, I	DEC 2	021			
		Second S	Semester	•					
		Mechanical	Enginee	ring					
		15UPH203-MAT	•	•	7				
		(Common to Cher			5)				
		(Regulati	on 2015)					
Dur	ation: Three hours]	Maxin	num:	100	Marks
		PART A - (10 x	x = 10	Marks)					
1.	A dielectric can be made	a conductor by							CO1
	(a) compression	(b) heating	(c)	doping			(d) f	reez	ing
2.	Find the dielectric consta 4	ant for a material with electric susceptibility o		y of	f CO1				
	(a) 3	(b)5	(c)8	3			(d)1	6	
3.	A semiconductor has temperature coefficient of resistance CO2- I								
	(a) positive		(b)	zero					
	(c) negative		(d)	both pos	itive a	nd neg	ative		
4.	A hole in a semiconductor is defined as CO2					CO2			
	(a) a free electron (b) the incomplete part of an electron pair bon					ir bonc			
	(c) a free proton	()	d) a free	neutron					
5.	The magnetic field which destroys the superconductivity is called CO3-								
	(a) diamagnetic field (b) ferromagnetic field								
	(c) ferrimagnetic field (d) critical field								
6.	The magnetic susceptibil	lity in a supercondu	uctor wil	l be					CO3
	(a) postive	(b) negative	(c)	zero			(d) i	nfini	ty
7.	When does metal transfo	orm into glass?							CO4
	(a) at Curie temperature		(b)	at Critica	ıl temp	eratur	e		
	(c) at melting point of th	e metal	(d)	at glass t	ransiti	on tem	pera	ture	

8.	Which of the following can be used to prepare nano-powder and nano- particles					CO4- R	
	(a) sol	-gel technique		(b) plasma arching			
	(c) CV	'D		(d) Electrodepostion			
9.	Failure	e due to excessive de		CO5- R			
	(a) yield strength (b) tensile strength						
	(c) you	ing's modulus		(d) all.			
10.	Creep	Creep rate in ternary stage				CO5 -R	
		creases	(b) constant.	(c) increases	(d) none		
			PART – B (5 x 2	e= 10Marks)			
11.	State Wiedemann Franz law.					CO1- R	
12.	State Fermi level.				CO2- R		
13.	What is Maglev? State its applications.				CO3- R		
14.	What a	are carbon nanotube	s?		CO4- R		
15.	State p	bath function.				CO5 -R	
			PART – C (5 ×	x 16= 80Marks)			
16.	(a)	a) (i) Derive Claussius Mosotti relation.			CO1 -App	(10)	
	(ii) Write short notes on electrical and thermal conductivity.				CO1- App	(6)	
			Or				
	(b) (i) What do you know about Dielectric materials?				CO1 -App	(4)	
	(ii) Write short notes on Electrical susceptibility, dielectric constant and polarization.					(12)	
17.	(a) (i) Differentiate intrinsic and extrinsic semiconductor.					(6)	
	(ii) Evaluate various factors in hall effect				CO2- App CO2 - App		
			Or		11	()	
	(b)		er concentration level with temperat	derivation in detail and ure.	CO2- Ana	(16)	
18.	(a)	(i) Explain in de applications.	tail High Tc sup	erconductors and list its	CO3 -Ana	(16)	
Or							
	(b)) (i) Explain soft and hard magnets.				(8)	
	(ii) Write short notes on SQUID and Domain theory				CO3 -Ana	(8)	
			-	-			

19.	(a)	(i) Explain plasma arcing in detail	CO4- U	(10)			
		(ii) Write short notes on ball milling	CO4 -U	(6)			
Or							
	(b)	(i) Explain in detail about metallic glasses preparation, properties and applications.	CO4 -Ana	(10)			
		CO4- Ana	(6)				
20.	(a)	(i) Explain the mechanism of creep.	CO5 U	(10)			
		(ii) Write short notes on carnot cycle. Or	CO5 U	(6)			
	(b)	CO5 U	(10)				
		CO5 U	(6)				

##