\mathbf{A}
\mathbf{A}
4 A

Reg. No.:

Question Paper Code: 93024

B.E./B.Tech. DEGREE EXAMINATION, DEC 2021

Third Semester

Electrical and Electronics Engineering

19UMA324- Probability, Statistics, Complex Analysis and Numerical Methods

		(Regulation	on 2019)		
Dura	ation: Three hours			Maximum: 100	Marks
		Answer All	Questions		
		PART A - (10x	1 = 10 Marks)		
1.	The degrees of freedor	n in t-tests is			CO6-U
	(a) n-1	(b) n-2	(c) n-3	(d) n-4	
2.	Large sample size is				CO6- U
	(a) 30	(b) > 30 (c) < 30	(d) none of t	hese
3.	The r th moment about	origin is			CO6- U
	(a) $\mu(X)$	(b) $\mu(X^2)$	(c) $\mu(X')$	(d) None above	of the
4.	Which of the following	g discrete distribution	has equal mean and var	iance?	CO6- U
	(a) Binomial	(b) Poisson	(c) Gamma	(d) Uniform	
5.	Iteration method conve	erges if $ g^1(x) $			CO6- U
	(a) >1	(b)<1	(c)=0 (d) $\stackrel{>}{=}$	>0	
6.	Newton's method is al	so called method of _			CO6- U
	(a) tangents	(b) slope	(c) secants	(d) false	
7.	Taylor Series method Milne's and Adam's m		give some value	es for RK,	CO6- U
	(a) initial	(b)final	(c)intermediate	(d) two	
8.	prior values are	required to predict the	e next value in Adam's	method	CO6- U
	(a) 1	(b)2	(c) 3	(d) 4	

9.	If f(z) is analytic a	at all points inside	and on a simple c	closed curve c, then	CO6- U
	$\int_{C} f(z)dz =$				
	(a) 2πi	(b) -2πi	(c) 4πi	(d) 0	

CO6- U

(b)
$$\pm$$
 n π

(d)
$$\pi$$

$$PART - B$$
 (5 x 2= 10Marks)

11. Define Chi-square test of goodness of fit.

CO1-R

12. For Binomial distribution mean is 6 and variance is 2, Find P[X=x].

CO2- App

13. Write the condition of convergence of Newton's method.

CO3-U

14. Using Taylor's series method find y(1.1) given y' = x + y with y(1) = 0

CO4- App

15. Evaluate
$$\int_{c} \frac{z}{z-2} dz$$
 where C is $|z| = 2$

(8)

$$PART - C$$
 (5 x 16= 80Marks)

16. (a) (i) The following data are collected on two characters.

CO1- Ana (8)

	Smokers	Non Smokers
Literates	83	57
Illiterates	45	68

Using chi-square test to find is there any relation between smoking and literacy.

(ii) A random sample of 16 values from a normal population CO1- Ana showed a mean of 41.5 inches and the sum of squares of deviations from this mean equal to 135 square inches. Show that the assumption of a mean of 43.5 inches for the population is not reasonable. Obtain 95 percent and 99 percent fiducial limits for the same.

Or

(b) (i) A group of 10 rats fed on diet A and another group of 8 rats CO1 - Ana (8) fed on diet B, recorded the following increase in weight.

Diet A	5	6	8	1	12	4	3	9	6	10
Diet B	2	3	6	8	10	1	2	8		

Find the variances are significantly different.

(ii) Two researchers A and B adopted different techniques while CO1 -Ana rating the student's level. Can you say that the techniques adopted by them are significant?

Researchers	Below Average	Average	Above Average	Genius	Total
A	40	33	25	2	100
В	86	60	44	10	200
Total	126	93	69	12	300

17. (a) A Random Variable X has the following probability distribution CO2 -App (16)

X=X	0	1	2	3	4	5	6	7
P(X=x)	0	a	2a	2a	3a	a ²	2a ²	$7a^2+a$

Find (i) The value of 'a',

(ii)
$$P(X \le 6)$$
, $P(X \ge 6)$, $P(0 \le X \le 4)$,

(iii)
$$P(X < 6/X > 4)$$
,

(iv) Find the minimum value of ' λ 'such that $P(X \le \lambda) > \frac{1}{2}$.

Or

- (b) Define Poisson distribution. Find the moment generating function CO2 -App (16) and Hence find mean and variance.
- 18. (a) (i) Using Newton's Raphson method find the real positive root of CO3- App x^4 -x-10=0. (8)

(ii) Solve
$$4x + 2y + z = 14$$
, $x + 5y - z = 10$, $x + y + 8z = 20$ by CO3- App (8)

Gauss Elimination method.

Or

- (b) (i) Solve 4x + 2y + z = 14, x + 5y z = 10, x + y + 8z = 20 by CO3- App Gauss Seidel method. (8)
 - (ii) Using Power method find numerically largest Eigen value of CO3- App (8) $\begin{pmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{pmatrix}$
- 19. (a) (i) Using Taylor's series method find y(0.1) for $\frac{dy}{dx} = x^2 y 1$, CO4-App (8) y(0) = 1
 - (ii) Given $\frac{dy}{dx} = 1 + y^2$, y(0) = 0, y(0.2) = 0.2027, y(0.4) = 0.4228, CO4-App (8)

y(0.6) = 0.6841 evaluate y(0.8) by Adams – Bash forth Method.

Or

- (b) (i) Using R-K method of fourth order, solve $\frac{dy}{dx} = \frac{y^2 x^2}{y^2 + x^2}$ with y(0) = 1 at x = 0.2
 - (ii) Using Milne's method find y(4.4) given $5xy' + y^2 2 = 0$ CO4 -App (8) given

y(4) = 1, y(4.1) = 1.0049, y(4.2) = 1.0097 and y(4.3) = 1.0143

- 20. (a) (i) Evaluate using Cauchy's Integral formula for CO5- App (8) $f(z) = \int \frac{2z-1}{z(z+1)(z-3)} dz, \text{ where 'C'} : |z| = 2.$
 - (ii) Find the Laurent's series of $f(z) = \frac{7z 2}{z(z+1)(z-2)}$ valid in the region 1 < |z+1| < 3

Or

(b) (i) Evaluate: $\int_{-\infty}^{\infty} \frac{x^2}{(x^2+4)(x^2+9)} dx$, using contour integration. (8)

(ii) Evaluate $f(z) = \frac{1}{(z+1)(z+3)}$ in Laurent series valid for the CO5-App (8) region

$$1 < |z| < 3$$
.