A
/

Reg. No.:					

Question Paper Code: 93305

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2021

Third Semester

Electrical and Electronics Engineering

			-				
	19	UEE305 - ELECTRO N	MAGNETIC FIELDS	3			
		(Regulation	n 2019)				
Du	ration: Three hours			Maximum: 1	00 Marks		
		Answer ALL (Questions				
		PART A - (10 x 1	= 10 Marks)				
1.							
	(a) Divergence	(b) Gradient	(c) Curl	(d) Laplacia	n		
2.	*	system variables, is the value of y is given a		Cartesian	CO1- R		
	(a) $r \sin \theta \cos \phi$	(b)) $r \sin \theta \sin \phi$	(c) $r \sin 2\theta$	(d) r cos 2 φ)		
3.	Coulomb is the unit of	which quantity?		(CO2-R		
	(a) Field strength	(b) Charge	(c) Permittivity	(d) Force			
4.	As charge increases, wh	hat happens to flux dens	ity?		CO2-U		
	(a) Increases	(b) Decreases	(c) Remains consta	nt (d) Becomes	s zero		
5.	Which of the following	cannot be computed us	ing the Biot Savart la	aw?	CO3- U		
	(a) Magnetic field inten	sity	(b) Magnetic flux of	density			
	(c) Electric field intens	sity	(d) Permeability				
6.	6. If a coil carrying current is placed in a uniform magnetic field, then						
	(a) emf is produced		(b) Torque is prod	uced			
	(c) Force is produced		(d) Torque and for	rce is produced			
7.	What is the another nar	ne for Transformer emf			CO5- U		
	(a) Motional emf		(b) Statically	Induced emf			
	(c) A combination of n	notional and transformer	r emf (d) None of t	the above			

8.	Wha	ce,	CO5- U						
	(a) Attenuation constant			(b) Constitutive parameter	(b) Constitutive parameter(σ , ε , μ)				
	(c) Loss tangent			(d) Reflection coefficient	(d) Reflection coefficient				
9.	Elec	etromagnetic waves	are represented in	which of the following format?		CO5- U			
	(a) Longitudinal waves			(b) Transverse waves	(b) Transverse waves				
	(c)	Sinusoidal waves		(d) Surface waves					
10.	Unit	t of Poynting Vector	or		CO	O5- App			
	(a) V	Watt	(b) Watt/s	(c) Watt/m ²	(d) Watt/r	n			
			PART – B ((5 x 2= 10 Marks)					
11.	•	plain the terms differ rdinate system	erential length and	differential surface in cylindrical	CC	01-U			
12.	Defi	ine Electric Field In	CO2-U						
13.	Stat	te ampere circuital	CO3-U						
14.	Cor	CC	05- U						
15.	5. Define Intrinsic Impedance				CO6-U				
			PART – 0	C (5 x 16= 80Marks)					
16.	(a)	$D=xy^2 a_x+y^3 a_y + y$		theorem considering the field etangular parallelepiped formed =0,z=1.	CO1-App	(16)			
	(b)	•	orem for the vecto h diameter from -2	or field B= $\rho\cos\phi$ a_{ρ} + $\sin\phi$ a_{ϕ} for 2 to +2	CO1-Ana	(16)			
17.	(a)	* * *	s law to determine uniform charged w Or	the electric field intensity due	CO2- App	(16)			
	(b)	tangential comport the boundary, w	nent of Electric field	or and free space show that the ld intensity is continuous across l component of Electric field indary	CO2- App	(16)			

- 18. (a) At an interface separating two different magnetic materials show CO3- App that the tangential component of magnetic field intensity is continuous across the boundary, whereas the normal component of magnetic field intensity is discontinuous at the boundary

 Or

 (b) Verify ampere's circuital law for infinite long straight conductor CO4- App placed along z axis. Assume amperian loop for the straight conductor
- 19. (a) With necessary explanation, derive the Maxwell's equation in CO5-App (16) differential and integral forms for dynamic fields

Or

- (b) State and explain Faraday's law of electromagnetic induction and CO5- App derive the expressions for statically and dynamically induced emf.
- 20. (a) Obtain the electromagnetic wave equation for free space in terms of CO6-U electric field and explain the wave propagation with necessary parameters.

Or

(b) Derive an expression for pointing theorem in integral and pointing CO6-U (16) form