	Reg. No. :				
	Question Paper	Code: 43306			
	B.E. / B.Tech. DEGREE EXAMINATION, DEC 2021				
	Third Semester				
	Electrical and Electronics Engineering				
	14UEE306 – DIGITAL LOGIC CIRCUITS				
	(Regulation 2014)				
	Duration: Three hours Answer AL	L Questions	Maximum: 100 Marks		
PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$					
l.	The 2's complement of the number 1010101 is				
	(a) 0101011 (b) 0101010	(c) 1101010	(d) 1110011		
2.	What is the major advantage of ECL logic	?			
	(a) very high speed(c) very low cost		(b) wide range of operating voltage(d) very high power		
3.	The output of an exclusive-NOR gate is 1. Which input combination is correct?				
	(a) A=1, B=0 (b)A=0, B=1	(c) A=0, B=0	(d) none of these		
1.	AND-OR realization is equivalent to				
	(a) SOP (b) POS	(c) K-map	(d) None of these		
5.	Race around condition occurs in JK flip-flo	op if			

1.

2.

3.

4.

5.

(a) J=1,K=1 (b) J=0,K=0 (c) J=0,K=1 (d) J=1,K=0 6. In the toggle mode a JK flip-flop has

(b) J = 1, K = 1 (c) J = 0, K = 1 (d) J = 1, K = 0(a) J = 0, K = 0Which of the following is a type of shift register counter? 7. (a) Decade (b) Binary (c) Ring (d) BCD 8. What programmable technology is used in FPGA devices? (a) SRAM (b) FLASH (c) Antifuse (d) All the above 9. The example of sequential circuit is (b) 7-segment display (a) Counter (c) Combinational logic circuit (d) Shift register 10. A full-adder h.as a $C_{in} = 0$. What are the sum (Σ) and the carry (C_{out}) when A = 1 and B = 1?(a) $\Sigma = 0$, $C_{out} = 0$ (b) $\sum = 0$, $C_{out} = 1$ (d) $\Sigma = 1$, $C_{out} = 1$ (c) $\Sigma = 1$, C_{out} = 0

PART - B ($5 \times 2 = 10$ Marks)

- 11. State DeMorgan's theorem.
- 12. Why is MUX called as data selector?
- 13. What are synchronous sequential circuit?
- 14. What is a hazard?
- 15. Write VHDL code for D flip-flop.

PART - C (5 x
$$16 = 80$$
 Marks)

- 16. (a) (i) Explain Gray code and Binary code. (8)
 - (ii) Compare the Characteristics of TTL, ECL and CMOS logic families. (8)

(b) (i) Convert 1010111011101100₂ into octal, decimal and hexadecimal equivalent. (8)
(ii) Explain Hamming code with an example. State its advantages over parity codes.

(8)

17. (a) Design a full adder using two half-adders and an OR gate. (16)

Or

- (b) (i) Design a BCD to Excess-3 code converter.
 (ii) Design a full adder and implement it using suitable multiplexer.
 (8)
- 18. (a) Design a synchronous counter to count the sequence 0 1 2 4 5 6 0 using JK flip flop. (16)

Or

- (b) (i) Design a serial adder using Mealy state model. (8)
 - (ii) List and explain the steps used for analyzing a synchronous sequential circuit.

(8)

19. (a) Explain the various types of hazards in sequential circuit design and methods to eliminate them. Give suitable examples. (16)

Or

(b) (i) An asynchronous sequential circuit is described by the following excitation and output function.

$$Y=x_1 x_2'+(x_1+x_2')y$$

$$Z=y$$
(1) Draw the logical diagram of the circuit
(2) Derive the transition table and output map.
(3) Obtain flow table.
(8)

(ii) Implement the following function using PLA $F_1 = \sum m (4,5,7)$ and

$$F_2 = \sum m (3,5,7).$$
(8)

20. (a) Explain the structural VHDL description for a 2 to 4 decoder in details.	
Or	

_

(b) Explain RTL design using VHDL with the help of examples. (16)