	Reg. No. :		
Q	uestion Paper Cod	e: 43303	
B.E. / F	B.Tech. DEGREE EXA	MINATION, DEC	C 2021
	Third Seme	ester	
	Electrical and Electron	ics Engineering	
	14UEE303 – FIELI	D THEORY	
	(Regulation 2	2014)	
rs	Answer ALL Q	uestions	Maximum: 100 Marks
	PART A - (10 x 1 =	= 10 Marks)	
ctor is			
ict	(b) cross product	(c) one	(d) zero
ordinate	e system φ varies from		
	(b) 0 to 180°	(c) 0 to 270°	(d) 0 to 360°
at a po	int in space is given by	$B=4xa_x+2Kya_v+8$	Sa _z wb/m ² .Find the value

2. In cylindrical coordinate sy

(a) 0 to 90°

The Curl of a vector is

(a) dot product

Duration: Three hours

3. The flux density at a point constant k must be equal to

(a) -2

(b) -0.5

(c) +0.5

(d) +2

4. ε_0 is

(a) $8.854*10^{-12}$ F/M

(b) $6.854*10^{-12}$ F/M

(c) $6.854*10^{-12}$ H/M

(d) 8.854*10⁻¹² F/M

5. The number of magnetic flux crossing unit area perpendicularly is called

(a) Magnetic intensity

(b) Magnetic flux density

(c) Magnetic Force

(d) Magnetic field lines

6.	Given a vector field F=y the X-axis from x=1 to x	•	line integral F.dl evalua	ted along a segment on				
	(a) -2.33	(b) 0	(c) 2.33	(d) 7				
7.	Magnetic material which	has iron as one of it	ts constituents is known	as				
	(a) Ferro magnetic material(c) Paramagnetic material		` '	(b) Diamagnetic material(d) Conducting magnetic material				
8.	Reluctance of magnetic of	ircuit						
	(a) $\frac{A}{l\mu}$	(b) $\frac{l}{A\mu}$	(c) $\frac{l}{\mu}$	(d) $\frac{A}{\mu}$				
9.	Electromagnetic waves c	an travel through sp	ace, they do not need thi	s to travel through				
	(a) electric energy	(b) charge	(c) medium	(d) magnetic field				
10.	The value of standing wa	ve ratio lies between	n					
	(a) 1 and ∞	(b) 0 and ∞	(c) $-\infty$ and $+\infty$	(d) -1 and $+1$				
		PART - B (5 x	2 = 10 Marks)					
11.	Define Curl.							
12.	Express the Poisson's and	d Laplace equation.						
13.	Define Lorentz law of fo	rce.						
14.	14. Write down the integral and point form of Maxwell's equation using Faraday's law.							
15.	Define wave propagation							
		PART - C (5 x 1	16 = 80 Marks)					
16.	(a) Explain briefly the sp	oherical and cylinde	rical coordinate systems.	(16)				
		О	r					
	(b) State and prove							
	(i) Divergence	heorem		(8)				
	(ii) Stokes theor	em		(8)				
17.	(a) (i) Develop an expension $Z = 0$ plane, using		O due to the infinity she	eet of charge placed in (8)				

	(ii) Develop an expression for electric field intensity due to an uniformly charming infinite long straight line with constant charge density in c/m .	rged (8)					
	Or						
(b)	Explain the capacitance of a parallel plate capacitor and calculate the equiva- capacitance value using the following details. Plate area $A = 100 \ cm^2$	alent					
	Dielectric-1 $\operatorname{Er}_1 = 4$, $\operatorname{d}_1 = 2 mm$						
	Dielectric-2 $\text{Er}_2 = 3$, $d_2 = 3 \text{ mm}$						
	If $200V$ is applied across the plates, what will be the voltage, gradient across dielectric?	each					
18. (a)	(a) State and explain Ampere's circuit law and show that the field strength at the en long solenoid is one half of that at the centre.						
Or							
(b)	Derive the energy stored and hence energy density in a magnetic field.	(16)					
19. (a)	a) State and derive the Maxwell's equations for free space in integral form and point for time varying field.						
Or							
(b)	Derive the Maxwell's equation and obtain them in point and integral form.	(16)					
20. (a)	Derive wave equations for a conducting medium.	(16)					
	Or						
	(b) (i) What is the different conditions of uniform plane wave?	(8)					
	(ii) Derive a physical phenomenon of electro-magnetic wave equation.	(8)					