Reg. No.:					
Reg. No. :					
1105.110					

Question Paper Code: 43302

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2021

	Third	Semester			
	Electrical and Ele	ctronics Engineering			
	14UEE302 - DC MACHIN	IES AND TRANSFORMERS			
	(Regula	ation 2014)			
	Duration: Three hours	Maximum: 100 Ma	ırks		
	Answer A	LL Questions			
	PART A - (10	x 1 = 10 Marks			
1.	Electromotive force is provided by				
	(a) Resistance(c) An electric current	(b) A conducting path(d) An electrical supply source			
2. Hysteresis loss can be minimised by selecting a magnetic material having					
	(a) large B/H loop area(c) High retentivity	(b) High resistivity(d) Low hysteresis coefficient			
3.	Which generator has poorest voltage regu	ılation?			
	(a) Series(c) Long shunt compound	(b) Shunt(d) Short shunt compound			
4.	In 8 - pole wave connected motor armatu	re, the number of parallel paths are			
	(a) 8 (b) 4	(c) 2 (d)1			
5.	The speed of the dc motor can be control	led by varying			
	(a) Its flux per pole(c) Applied voltage	(b) Resistance of armature circ(d) All of the above	cuit		

6.	On what factors the speed of dc motor depend	s?	
	(a) applied voltage	(b) field flux	
	(c) armature Current	(d) all of the above	
7.	The frequency of secondary voltage is		
	(a) greater than primary voltage frequency	<i>I</i>	
	(b) less than primary voltage frequency		
	(c) equal to primary voltage frequency		
	(d) none of the above		
8.	Transformer cores are laminated in order to		
	(a) simply its construction(c) reduce cost	(b) minimize eddy current loss(d) reduce hysteresis loss	
9.	One of the main advantages of Swinburne's te	est is that it	
	(a) its applicable for shunt motors(c) its very economical and convenient	(b) needs one running cost(d) ignore any charge in iron loss	
10. The main purpose of performing open-circuit test on a transformer is measure its			
	(a) cu loss	(b) core loss	
	(c) total loss	(d) insulation resistance	
	PART - B (5 x 2 =	= 10 Marks)	
11.	List the types of magnetic systems with examp	ples.	
12.	Define critical resistance.		
13.	Why a series motor should not be started on n	o load?	
14.	Define all-day efficiency.		
15.	What are the losses in a DC machines?		
	PART - C (5 x 16 =	= 80 Marks)	
16.	(a) Briefly explain the multiply-excited magn	etic systems? (16))
	Or		
	(b) (i) Explain the concepts of rotating magn	netic field. (8))
	(ii) Obtain the torque equation for round	rotor machines. (8))

17. (a) (1) Derive the Elvir equation of DC generator.	erator. (8	(i) Derive the EMF equation of DC generator.	17. (a) (i)
--	------------	--	-------------

(ii) A 4 pole lap connected DC armature has 100 slots and 8 conductors per slot and runs at 700 *rpm*, EMF generated is 310 *V*. Find the useful flux per pole. (8)

Or

- (b) (i) An 8 pole lap connected DC shunt generator delivers an output of 240 A at 500V. The armature has 1408 conductors and a 60 commutator segments. If the brushes are given a lead of 4 segments from no- load neutral axis estimate the demagnetizing and cross magnetizing AT/pole. (8)
 - (ii) Estimate the reactance voltage for a D.C shunt machines having 55 commutator segments brush width in commutator segments of 4cm, self-inductance of 0.153*mh* and current per coil of 27*A*. The speed of the machine is 700 *rpm*. (8)
- 18. (a) The back emf of a shunt motor is 230*V*, the field resistance is 16 *ohm*'s and field current is 1.5*A*. If the line current is 37*A*. Find the armature resistance also find the armature current when the motor is stationary. (16)

Or

- (b) Explain the different methods used for the speed control of dc shunt motor. (16)
- 19. (a) (i) Draw the equivalent circuit of a transformer and derive the components with respect to primary side. (8)
 - (ii) Explain the working and construction of auto transformer. (8)

Or

(b) The primary and secondary windings of a 30KVA, $6.6\ KV/230V$ transformer have resistance of 10Ω and 0.013Ω respectively. The leakage reactance of the windings are 17Ω and 0.022Ω . Estimate the percentage voltage regulation of the transformer when it is delivering full-load at 0.8 power factor lagging at the rated voltage. (16)

20. (a	i) With the help of neat circuit diagram explain the following test of a DC m	achine.
	(i) Hopkinson's test	(8)
	(ii) Swinburne's test	(8)
	Or	
(b) (i) What are the losses occurring in transformer and explain.	(8)
	(ii) Derive the condition for maximum efficiency in a transformer?	(8)