Reg. No. :										
------------	--	--	--	--	--	--	--	--	--	--

Maximum: 100 Marks

Question Paper Code: 47302

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2021

Seventh Semester

Electrical and Electronics Engineering

14UEE702 - POWER SYSTEM OPERATION AND CONTROL

(Regulation 2014)

Duration: Three hours

Answer ALL Questions

PART A - (10 x 1 = 10 Marks)

- 1. The area under the daily load curve gives
 - (a) The number of units generated in a day (b) Average load of the day
 - (c) The load factor of the day (d) The number of units generated in the year

2. The load factor for domestic loads may be taken as

- (a) about 85% (b) 50-60% (c) 25-50% (d) 20-15%
- 3. In an ALFC loop, the frequency deviation can be reduced using ______ controller.

(a) Differential (b) Integral (c) Proportional (d) All of these Plan

- 4. The time constant of power system when compared to a speed governor is
- (a) Less (b) More (c) Same (d) None of these

5. The different types of tap changing transformers are _____

(a) Off-load (b) On load (c) Both (a) and (b) (d) Either (a) or (b)

6. Which is treated as the heart of an excitation system?

(a) Main exciter	(b) Pilot exciter	(c) Rotor field exciter	(d) AVR
------------------	-------------------	-------------------------	---------

- 7. The optimum allocation of the generator at each generating station at various station load levels is called .
 - (a) State estimation (b) Unit commitment (c) Economic dispatch (d) None of these
- 8. When load on a thermal unit is increased, then fuel input
 - (a) Increases (b) Does not change (c) Decreases (d) None of these

9. A State estimation scheme is

- (a) Lagrangian function method
- (c) Lyapunov method (d) Weighted least square method

(b) Negative gradient method

- 10. The system is in secure condition, even the occurrence of all possible outages, the system remain secure then the operating mode of power system is
- (a) Alert mode (b) normal mode (c) 16-bit (d) contingency mode PART - B (5 x 2 = 10 Marks)
- 11. Draw a typical load curve.
- 12. Differentiate static response from dynamic response of an ALFC loop.
- 13. The gain and time constants of an exciter are 100 and 0.5 seconds respectively. Compute the transfer function of this exciter.
- 14. Draw the incremental fuel cost curve for a thermal plant.
- 15. Define state estimation of a power system.

PART - C (5 x 16 = 80 Marks)

- 16. (a) (i) Why is the load on a power station variable? What are the effects of variable load on the operation of the power station? (8)
 - (ii) A 100 MW power station delivers 100 MW for 2 hours, 50 MW for 6 hours and is shut down for the rest of each day. It is also shut down for maintenance for 45days each year. Calculate its annual load factor.

Or

- (b) State the importance of load forecasting in power system. Explain any three methods to forecast the load in an interconnected power network. (16)
- 17. (a) Derive the transfer function model of load frequency control of a Double area power system with necessary equations. (16)

Or

(b) Two alternators operate in parallel to supply a load of 400 MW. The capacities of the machines are 200 MW and 500 MW. Each has a droop characteristic of 4%. Their governors are adjusted so that the frequency is 100 % on full load. Calculate the load supplied by each unit and the frequency at this load. The system is a 50 Hz system.

18. (a) Draw the circuit diagram of a typical excitation system of an alternator and derive the transfer function model for the same. (16)

Or

- (b) Briefly discuss the various methods for voltage control in a power system with necessary equations and diagrams. (16)
- 19. (a) The fuel costs of two units are given by:

 $F_{1}=1.8+20 P_{G1}+0.12 P_{G1}^{2} Rs/hr., F_{2}=1.9+30 P_{G2}+0.12 P_{G2}^{2} Rs/hr. P_{G1} and P_{G2} are in MW. Compute optimum scheduling neglecting losses for a demand of 200 MW. (16)$

Or

(b) A power plant has 3 units with the following input output curves $Q_1 = 0.002 P_1^2 + 0.86 P_1 + 20 \text{ tons / hour}$ $Q_2 = 0.004 P_2^2 + 1.08 P_2 + 20 \text{ tons / hour}$ $Q_3 = 0.0028 P_3^2 + 0.64 P_3 + 36 \text{ tons / hour}$

(16)

Fuel cost is Rs. 500 per ton. Maximum and minimum generation level for each unit is 120 MW and 36 MW. Find the optimum scheduling for a total load of 200 MW.

20. (a) With a neat diagram, explain the various components involved in computer control of power systems using SCADA. (16)

Or	
(b) (i) Discuss the main functions of EMS in detail	(8)
(ii) Write short notes on state estimation of power systems.	(8)