٨
$\boldsymbol{\Box}$

Duration: Three hours

Reg. No.:										
-----------	--	--	--	--	--	--	--	--	--	--

Maximum: 100 Marks

Question Paper Code: 52004

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2021

Second Semester

Electrical and Electronics Engineering

15UPH204 - SOLID STATE PHYSICS

(Common to Biomedical Engineering)

(Regulation 2015)

		PART A - (10 x	x 1 = 10 Marks			
1.	The electrical conductivity of a conductor may be increased by					
	(a) Increasing its temperatu	ire	(b) decreasing its temperature			
	(c) Increasing its vibrations	3	(d) Decreasing its mobility			
2.	In classical free electron theory, electrons constitute electron gas, obeying under the equilibrium condition.					
	(a)Maxwell–Boltzmann st	atistics	(b) Bose Einsteins statistics			
	(c) Fermi Dirac statistics		(d) Zone theory			
3.	Conductivity of a semiconductor increases with					
	(a) increase in temperature		(b) decrease in temperature			
	(c) constant temperature		(d) increase in band gap			
4.	At O K, a semiconductor a	cts		CO2- R		
	(a) as a superconductor		(b) a good conductor			
	(c) as an insulator		(d) same as semiconductor			
5.	Water is a	_ substance.		CO3 -R		
	(a) paramagnetic		(b) ferromagnetic			
	(c) diamagnetic		(d) anti ferro magnetic			

6.	The structure of High temperature superconductor is					O3 -R	
	(a) o	cubic	(b) FCC	(c) BCC	(d) pervoski	te	
7.	Ioni	ic polarization	n		C	O4- R	
	(a) o	decreases wit	h increase in tempera	ture			
	(b) i	is independer	nt of temperature				
	(c) i	increases with	h temperature				
	(d) :	first increases	s and then decreases v	with temperature			
8.	Peri	mittivity of fr	C	O4 -R			
	(a) $8.854 \times 10^{-12} \text{ F/m}$			(b) $7.854 \times 10^{-12} \text{ F/m}$			
	(c) 9	9 x 10 ⁹ F/m		(d) $6.625 \times 10^{-24} \text{ F/m}$			
9.	The	versatility of	f nanotechnology is d	ue to	(CO5 R	
	(a) low density ratio			(b) high surface to volume	ratio		
	(c) l	low surface to	o volume ratio	(d) high density ratio			
10.		The approach used to construct nano materials by merging smaller components into more complex assemblies is					
	(a) T	Top-down ap	proach	(b) Bottom-up approach			
	(c) 1	bottom-botto	m approach	(d) Top-top approach.			
			PART –	B $(5 \times 2 = 10 \text{Marks})$			
11.	. Mention any two postulates of classical free electron theory						
12.	2. Distinguish between elemental and compound semiconductors.						
13.	3. Write note on High Temperature Super Conductors (HTSC).					O3- R	
14.	. Mention any two properties of ceramics.					O4- R	
15.	Mei	ntion the appl	lications of nano mate	erials in electronics.	C	O5- R	
			PART	– C (5 x 16= 80Marks)			
16.	(a)		l electrical Conductiv	ory derive an expression for the vity and Explain Lorentz number Or	CO1 -App	(16)	
	(b)		•	es in metals. Calculate carriering an expression for density of	CO1 -App	(10)	
		1 1	an expression for Ferr	mi energy in terms of carrier	CO1 -U	(6)	

17.	(a)	(i) What is Hall effect? Obtain the expression for Hall coefficient in terms of current density and electronic charge.	CO2 -App	(8)
		(ii) Hall coefficient of certain silicon specimen was found to be $-7.35 \times 10^{-5} \text{m}^3\text{C}^{-1}$. Determine the nature of the semiconductor, if the conductivity was 200 $\Omega^{-1}\text{m}^{-1}$. Calculate the density and mobility of the charge carriers	CO2 -App	(8)
	(b)		CO2 -Ana	(16)
18.	(a)	Explain domain theory of ferromagnetism. Or	CO3 -Ana	(16)
	(b)	Show that superconductors are perfect diamagnet. Differentiate type I and type II superconductor. Why do we prefer Type II superconductors for making permanent magnets?	CO3 -Ana	(16)
19.	(a)	(i) What is meant by internal field in dielectrics? Obtain an expression for internal field experienced by an atom in a cubic structure using Lorentz method.	CO4 -U	(8)
		(ii) Assume ϵ_r as dielectric constant of the material and α_e as electronic polarisability, deduce Clausius Mosotti relation using the expression obtained above for internal field. Or	CO4- U	(8)
	(b)	Explain the various methods of processing in ceramics	CO4 -Ana	(16)
20.	(a)	Discuss the techniques of synthesis of Nano materials using Ball milling and Chemical Vapour Deposition method Or	CO5- U	(16)
	(b)	(i) Explain the variation of nano material's property with its geometry	CO5 -U	(12)
		(ii) Mention the applications of nanomaterials.	CO5 -U	(4)