A
\mathbf{A}
∡ <u> </u>

(a) 0.3dB.

(b) 30dB

Reg. No.:					

Question Paper Code: 54303

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2021

Fourth Semester

	Electrical	and Electron	ics Engine	ering		
	15UEE40	3- CONTRO	OL SYSTI	EMS		
		(Regulation 2	2015)			
Dura	ation: Three hours				Maximum: 100) Marks
	An	swer ALL Q	uestions			
	PART	A - (10 x 1 =	= 10 Marks	s)		
1.	Transfer function of a system is following?	is used to	calculate	which of	the	CO1- U
	(a) The order of the system	(b)	The time c	onstant		
	(c) The output for any given input	(d)	The steady	state gain		
2.	The overall transfer function from blocks is given by	ded	CO1-U			
	(a) Sum of individual gain	(b) Product	of individ	ual gain		
	(c) Difference of individual gain	(d) Division	n of individ	lual gain		
3.	If the characteristic equation of a cl the system is	losed-loop sy	ystem is s^2	+2s+2=0, t	hen	CO2 -U
	(a) Over damped (b) Criticall	y damped	(c) Unde	r damped	(d) undampe	d
4.	Root locus is used to calculate					CO2 -R
	(a) Marginal stability	(b) Absolut	e stability			
	(c) Conditional stability	(d) Relative	stability			
5.	The unit adopted for magnitude me	easurement i	n Bode plo	ots is		CO3-R
	(a) Degree	(b) Decima	(c) D	ecibel	(d) Devia	tion
6.	The frequency at which magnitude from its zero frequency value is cal				own	CO3-R

(c) 0.33dB

(d) 3dB

7. For Nyquist contour, the size of radius is

CO4-R

(a) Zero

- (b) Unity
- (c) Infinity
- (d) Constant
- 8. The characteristic equation of a system is given as $3S^4 + 10S^3 + 5S^2 + 2 = 0$. CO4-U This system is:
 - (a) Marginally stable
- (b) Stable
- (c) Unstable
- (d) Linear
- 9. State space analysis is applicable even if the initial conditions are

CO5- U

(a) Zero

- (b) Non-zero
- (c) Equal
- (d) Not equal

10. Solution of state equation is-----

CO5 -R

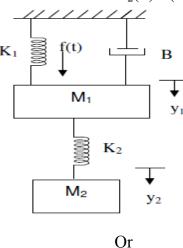
- (a) $e^{-At}_{X(0)}$
- (b) e^{At}

- (c) $e^{At}_{X(0)}$
- (d) $-e^{At}_{X(0)}$

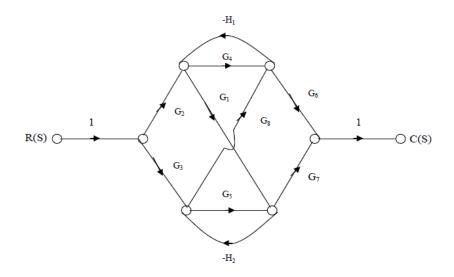
$$PART - B$$
 (5 x 2= 10 Marks)

- 11. What is block diagram? What are the basic components of block diagram? CO1- U
- 12. List out the time domain specification.

CO2-R


- 13. Define phase cross over frequency and gain cross over frequency.
- CO3-R
- 14. What are the necessary conditions for stability of a control system?
- CO4-R

15. Define State and State variables.


CO5-U

$$PART - C (5 \times 16 = 80 \text{ Marks})$$

16. (a) Determine the transfer function $Y_2(S)/F(S)$ of the system shown in CO1- App (16)

(b) Find the overall gain of the system whose signal flow graph is CO1-App (16) shown in figure.

17. (a) Determine the generalized error coefficient and steady state error CO2- App (16) for a system whose open loop transfer function is G(s) = 1/(S(S+1)(S+10)) and the feedback transfer function is H(s) = (S+2) with input $r(t) = 6 + t + t^2$

Or

- (b) The open-loop transfer function of a control system is given as CO2 -App (16) $G(S)H(S) = \frac{K}{(S+1)(S+10)(S+30)}$.Draw the root locus. Obtain the value of K for which the system becomes unstable.
- 18. (a) The open loop transfer function of a unity feedback system is CO3-App (16) given by

 $G(S) = \frac{1}{S(S+1)(2S+1)}$. Sketch the polar plot and determine the gain margin and phase margin.

Or

- (b) Draw the circuit of a lag- lead compensator and drive its transfer CO3- App (16) function. What are the effects?
- 19. (a) Explain the procedure for the design of the lag compensator based CO4- Ana on frequency response approach. (16)

Or

(b) Apply Nyquist stability criterion to the system with loop transfer CO4- Ana (16) function

$$G(s)H(S) = \frac{4S+1}{S^2(1+S)(1+2S)}$$
 And ascertain its stability.

20. (a) The state model of the system is given by

$$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \\ \dot{x_3} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 10 \end{bmatrix} u;$$

$$y = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

- (i) Find the transfer function for the given state model.
- (ii) Determine whether the system is completely controllable and observable.

Or

(b) Obtain a state space model of the system with transfer function CO5- Ana (16)

$$\frac{Y(s)}{U(s)} = \frac{6}{s^3 + 6s^2 + 11s + 6}$$