D 37					
Reg. No.:					
1102. 110					
0					

Question Paper Code: 49317

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2021

Elective

Electrical and Electronics Engineering

	14UEE9	17 FLEXIBL	LE AC T	'RANSI	MISSION SY	STEM
		(R	Regulation	on 2014))	
Duration: Tl	nree hours					Maximum: 100 Marks
		Ansv	wer ALI	_ Questi	ons	
		PART A	- (10 x	$1 = 10^{\circ}$	Marks)	
1. For the loa	ad angle of 30	°, the ratio of	ratings	of serie	s to shunt con	npensators to be
(a) 7	.2%	(b) 0.72%		(c) 72%)	(d) 14%
2. The chang	e in electrical	properties of	a trans	mission	line in order t	o increase its power
transmiss	ion capability	is known as			_	
(a) L	oad compens	ation	(b) Li	ne com	pensation	
(c) L	oad synchron	ism	(d) L:	ine sync	hronism	
3. In TCR	full conductio	n mode is the	indicat	ion of fi	ring angle of	
(a) 9	0 (b)) 45 (0	e) 0		(d) 180	
4	is operate	ed without an	externa	l electri	c energy source	ce.
(a) S	SSC	(b) TCBR		(c) SVS	S	(d) IPFC
5	in which the	thyristor-swit	tched ca	pacitor	is in ON state	and current leads the
voltage i	n TCSC opera	ition.				
(a) S	teady state co	ndition	(b)	Off-stat	te condition	

(c) De blocking – normal condition (d) De blocking – abnormal condition

6.	6 is a capacitive reactance compensator which consists of a series capacitor bank								
	Sh	unted by a thy	ristor-controlled reactor i	n order to provide	a smoothly variable series				
	Ca	pacitive react	ance.						
		(a) SSSC	(b) TCSC	(c) TSSC	(d) TCSR				
7.	UP	FC is able to p	perform						
		(a) Voltage s	upport (b) Power flow c	ontrol (c) Improv	ed stability (d) All the above	ve			
8.	A	is a sl	hunt compensated reactiv	e power compensa	ation device that is capable of	f			
	ger	nerating /absor	bing reactive power.						
		(a) BESS	(b) STATCOM	(c) UPFC	(d) IPFC				
9.			_ is a combination of diff	Ferent static and m	echanically-switched VAR				
	Cor	npensators w	hose outputs are coordinate	ited					
		(a) Static Va	ar System (SVS)	(b) Thyristor S	(b) Thyristor Switched Capacitor (TSC)				
		(c) Thyriston	r Switched Reactor (TSR)	(d) Thyristor C	(d) Thyristor Controlled Reactor (TCR)				
10). Tl	ne technique fo	or enhancing the transient	stability during la	arge disturbances is				
(a) Adaptive control(c) Bang-Bang Control			control	(b) Continuous Control					
			ng Control	(d) None of the above					
			PART - B (5	x 2 = 10 Marks)					
11	. D	efine unified p	ower flow controller (UP	FC)?					
		_	cance of short circuit pow	ŕ					
13	. C	ompare Capac	itive Vernier mode with I	nductive Vernier	mode in TCSC.				
14	. W	hat are the app	olications of SSSC?						
15	. Li	ist the differen	t types of controller intera	action?					
			. PART - C ($5 \times 16 = 80 \text{ Marks}$	3)				
16	. (a) Explain the	effect of shunt and series	compensation on	power transmission capacity	/?			
					(16	5)			
				Or					
	(b)) Discuss the	series and shunt compens	ation employed ir	improving the performance	,			
		of transmiss	ion line.		(1	6)			

17.	(a)	Explain the operation of SVC .Discuss the different advantages of slope in dyn	amic					
		Characteristics of SVC.	(16)					
Or								
	(b)	Explain briefly about design of SVC voltage regulator?.	(16					
18.	(a)	(i) Explain briefly about variable reactance model of TCSC?	(8)					
		(ii) What is the need of variable series compensation?	(8)					
		Or						
	(b)	Illustrate the enhancement of system damping using Thyristor Controlled Serie	S					
		Capacitor.	(16)					
19.	(a)	Explain the operation and the V-I characteristics of STATCOM with diagram?	(16)					
		Or						
	(b)	What is SSSC? Draw its circuit diagram and explain its working in detail?	(16)					
20.	(a)	Describe the coordination procedure of multiple controllers using Genetic Algorithms and the coordination procedure of multiple controllers using Genetic Algorithms and the coordination procedure of multiple controllers using Genetic Algorithms and the coordination procedure of multiple controllers using Genetic Algorithms and the coordination procedure of multiple controllers using Genetic Algorithms and the coordination procedure of multiple controllers using Genetic Algorithms and the coordination procedure of multiple controllers using Genetic Algorithms and the coordination procedure of multiple controllers using Genetic Algorithms and the coordination of the coordination	rithm					
			(16)					
		Or						
	(b)	Explain the coordination of multiple controllers using linear control techniques?	(16)					
								