A		Reg. No. :										
		C										
		Question	Paper	Code	: 930	23						
	B.E.	/B.Tech. DEGREE	E EXAN	MINATI	ON, I	DEC 2	2021					
		Thi	rd Sem	ester								
		Electronics and Co	mmun	ication E	Engine	ering	5					
	19U	MA323- Numerica	al Anal	ysis and	Linea	r Alg	ebra	l				
		(Reg	ulation	2019)								
Dur	ation: Three hours						М	laxir	num	: 100) Mai	rks
		Answei	r All Q	uestions								
		PART A -	(10x 1	= 10 Ma	urks)							
1.	Trapezoidal rule is so oftrapezoid	o called, because it s	approx	ximates	the int	egral	by	the s	um		CC	6- U
	(a) n	(b) n+1	((c) n-1				(d)	2n			
2.	Gaussian two point quadrature formula is exact for polynomials up to degree CO6								6- U			
	(a) 1	(b) 2	(c) 3	3				(d)	5			
3.	Taylor Series method will be very useful to give some values for RK,CO6- UMilne's and Adam's methods								6- U			
	(a) initial	(b) final		(c) inter	rmedia	ate		(d)	two			
4.	prior values are required to predict the next value in Adam's method								CO	6- U		
	(a) 1	(b) 2	((c) 3				(d)	4			
5.	PDE of second order	$a^{2}, \text{ if } B^{2} - 4AC < 0$	then								CO	6- U
	(a) parabolic	(b) elliptic		(c) hype	erbolic	e (d	l) No	on ho	omog	gene	ous	
6.	Bender-Schmidt recurrence equation is valid if $\lambda =$							CO	6- U			
	(a) $\frac{1}{2}$	(b) $\frac{1}{3}$		(c) $\frac{1}{4}$				(d)	1			

7.	In a vector space V known as	$x, \text{ for every } x, y \in V$	then the property $x + y =$	y + x is C	06- U		
	(a) commutative	(b) associative	(c) identity	(d) inverse			
8.	If T: $V \rightarrow W$ be linear	С	06- U				
	(a) 0	(b) 1	(c) 2	(d) 3			
9.	In a vector sapace V	, if $\langle x, y \rangle = \langle y, z \rangle$ the	en	С	06- U		
	(a) $y = z$	(b) $y \neq z$	(c) $y = -z$	(d) none of the	ese		
10.	The norm of $(3, -4, 0)$) is		C	06- U		
	(a) 3	(b) -4	(c) 0	(d) 5			
		PART – B (5	x 2= 10Marks)				
11.	Evaluate $\int_{1}^{2} \frac{dx}{1+x^2}$ with	h 2 equal intervals usi	ing trapezoidal rule	COI	- App		
12.	Using Euler's method find y(0.2) given $\frac{dy}{dx} = y + e^x$, y(0) =0 CO2-						
13.	Write down the Standard Five Point formula and Diagonal Five Point formula CO3- U to find the numerical solution of the Laplace equation $u_{xx} + u_{yy} = 0$						
14.	Verify the commutative property for a vector space $R \times R$ over R under CO4- App addition defined by $(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2)$						
15.	Find the norm of $(2,1,-1)$ in $V_3(R)$ with standard inner product. CO5 Ap						
		PART – C	(5 x 16= 80Marks)				
16.	(a) (i) Evaluate $\int_{0}^{6} \frac{1}{1}$	$\frac{dx}{x^2}$ with 6 equal inte	rvals by (a) Trapezoidal rul	CO1-App	(8)		
	(b) Simpson's						
	(ii) Using Roml	ii) Using Romberg's method Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ correct to					
	4 decimal pl	aces					
	(b) (i) Evaluate $\int_{0}^{\pi/2}$	sin x dx by dividing the	range into 10 equal parts	CO1 -App	(8)		

(i) Trapezoidal rule (ii) Simpson's $\frac{1}{3}$ rule

(ii) Evaluate $\int_{0}^{2} \frac{dx}{4 + x^{2}}$ using Romberg's method correct to 4 CO1-App (8) decimal places.

17. (a)
Using R-K method of fourth order, solve
$$\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$$
 with CO2 -App (16)
 $y(0) = 1$ at $x = 0.2$

Or

(b) Using R.K Method of 4th order, solve $\frac{dy}{dx} = x + y^2$ with y(0) = 1 CO2 -App (16) at x = 0.1

18. (a) Solve
$$\frac{\partial^2 u}{\partial x^2} = 16 \frac{\partial u}{\partial t}$$
 in $0 \le x \le 1$, $t \ge 0$ $u(0,t) = 0$, $u(1,t) =$
100t (8)

u(x,0) = 0 find the values of u for 1 time step function with $h = \frac{1}{4}$

by Crank-Nicholson's difference method.

Solve
$$\frac{\partial^2 u}{\partial x^2} = 2 \frac{\partial u}{\partial t}$$
, $u(0,t) = 0$, $u(4,t) = 0$, $u(x,0) = x(4 - x)$
Take h = 1 and find the values of u up to t = 5 using Bender-

Schmidt's difference equation.

Or

(b) Solve the Laplace equation $u_{xx} + u_{yy} = 0$ at the nine mesh points CO3- App (16) of the square given below. The values of u at the boundary are specified in the figure

0	11.1	17.0	19.7	18.6
	1-1-1-1-	1.1.4	1000	21.0
•	<i>u</i> ₁	<i>u</i> ₂	<i>u</i> ₃	- 21.5
0	1	10 600	o hat	21.0
	<i>u</i> ₄	<i>u</i> ₅	<i>u</i> ₆	170
0		11-	11-	17.0
9.37		**8		
0	8.7	12.1	12.8	9.0

- 19. (a) If $T: \mathbb{R}^2 \to \mathbb{R}^3$ be linear transformation defined by CO4-App (16) $T(a_1, a_2) = (a_1 + a_2, 0, 2a_1 - a_2)$ then find nullity(T) ,rank(T), Is T one-to-one? Is T onto? Also check the rank nullity theorem.
 - Or
 - (b) If T: $\mathbb{R}^2 \to \mathbb{R}^3$ be linear transformation defined by CO4-App (16) $T(a_1, a_2) = (a_1 + a_2, a_1 - a_2, a_2)$ then find nullity(T) ,rank(T), Is T one-to-one? Is T onto? Also check the rank nullity theorem.
- 20. (a) Apply Gram-Schmidt process to construct an orthonormal basis CO5- App (16) for $V_3(R)$ with the standard inner product for the basis $\{v_1, v_2, v_3\}$ where $v_1 = (1,0,1)$, $v_2 = (1,3,1)$ and $v_3 = (3,2,1)$

Or

(b) (i) Show that the following function defines an inner product on CO5- App (8) V₂(R) where x = (x₁, x₂) and y = (y₁, y₂) and ⟨x, y⟩ = x₁y₁ + 2x₂y₁ + 2x₁y₂ + 5x₂y₂
(ii) If x = (1 + i, 2, i) and y = (3i.2 + 3i, 4) then verify triangle CO5- App (8) inequality.