С		Reg. No. :										
		Question Pa	per	Coc	de:	934	402					
	H	B.E. / B.Tech. DEGREE E	XAN	1INA	ATI(DN,	DEC	202	21			
		Third	Seme	ester								
		Electronics and Comm	nunic	ation	n Er	igine	ering	5				
		19UEC302 - Digital I	Electi	ronic	s ar	d D	esign					
		(Regulat	tion 2	2019)							
Dur	ation: Three hours							М	laxin	num:	100	Mar
		Answer AL	L Qu	iesti	ons							
		PART A - (5	x 1 =	5 M	lark	s)						
1.	The 2's compleme	ent representation of -17 is										CO
	(a) 01110	(b)01111	((c)11	110				(d)1000)1	
2.	In a combination	al circuit, the output at any ne.	y tim	e dej	penc	ls or	ly or	n the	e			CO
	(a) Voltage	(b) Intermediate valu	es ((c) In	put	value	es		(d) Clo	ck pı	ılses
3.	Latches constructed with NOR and NAND gates tend to remain in the latched CO3 condition due to which configuration feature?											
	(a) Low input volt	ages	((b) S	yncł	ironc	ous op	erat	ion			
	(c) Gate impedance	e	((d) C	ross	cou	upling	5				
4.	What is/are the crucial function/s of memory elements used in the sequential circuits? CO4											
	(a) Storage of bina	ary information	((b) S _]	peci	fy the	e state	e of	seque	ential		
	(c) Both a & b		((d) N	one	of th	e abo	ve				
5.	Which one of the following has capability to store data in extremely high densities?								CO			
	(a) Register	(b) Capacitor	(c) Se	mic	ondu	ctor	(d) Fli	p-Flo	op	
		PART - B(5)	x 3=	15 N	1ark	s)						
6.	Perform the following code conversions: $(AB2)_{16} \rightarrow (?)_2 \rightarrow (?)_8 \rightarrow (?)_{10}$.					(02					
7.	Implement the hal	f adder using OR gate.									(CO2

8.	Com	pare sequential and combinational circuit.	CO3 U					
9.	Clas	sify static 1 and static 0 hazards.	CO4 U					
10.	Ном	many programmable gates are needed for PROM?.	CO5 U					
		PART – C (5 x 16= 80 Marks)						
11.	(a)	 (i) Subtract (1 1 1 0 0 1)₂ from (1 0 1 0 1 1)₂ using 2's complement method. (ii) Express (-0.75)₁₀ in IEEE single precision floating point representation. (iii) Find the dual expression of the Boolean expression (A.B+A.C+B.C). (iv). Convert decimal number 22.64 to hexadecimal number. Or 	CO1- App	(16)				
	(b)	Find a minimal sum-of-products for the Boolean expression $f(A, B, C, D) = \sum m(0, 2, 4, 7, 8, 10, 11, 13, 14)$ using tabulation method.	CO1- App	(16)				
12.	(a)	Design a 4-bit parallel adder/subtractor and explain the operation with logic diagram.	CO2- App	(16)				
		Or						
	(b)	Implement the Boolean function using 8:1 multiplexer $f(A, B, C, D) = \sum m(1,3,4,11,12,13,14,15)$.	CO2- App	(16)				
13.	(a)	Design S-R flipflop using T flipflop.	CO3- App	(16)				
	Or							
	(b)	How should a J-K flipflop be connected to function as a divide-by-2- element? Justify your answers.	CO3- App	(16)				
14.	(a)	Design an asynchronous sequential circuit with two inputs x1 and x2 and one output z. Initially, both inputs are equal to zero. When x1 or x2 becomes '1',the output z becomes 1.When the second input also becomes 1,the output changes to 0.The output stays at 0 until the circuit goes back to the initial state.	CO4- App	(16)				
Or								
	(b)	Design a hazard free switching circuits with relevant examples.	CO4- App	(16)				
15.	(a)	Design a Binary-to-Gray converter similar to basic ROM Structure	CO5- App	(16)				

(b)	Implement the following Boolean function using PAL	CO5- App	(16)
	$W(A,B,C,D) = \sum m(0,2,6,7,8,9,12,13),$		
	$X(A,B,C,D) = \sum m(0,2,6,7,8,9,12,13,14)$		
	$Y(A,B,C,D) = \sum m(2,3,8,9,10,12,13),$		
	$Z(A,B,C,D)=\sum m(1,3,4,6,9,12,14)$		