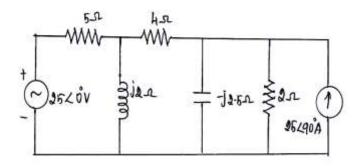
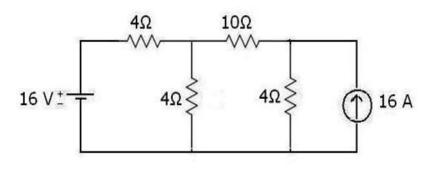

С		Reg. No. :										
Question Paper Code: 53403												
B.E. / B.Tech. DEGREE EXAMINATION, DEC 2021												
Third Semester												
Electronics and Communication Engineering												
15UEC303 - CIRCUIT THEORY												
(Regulation 2015)												
Duration: Three hours Maximum:									m: 1	00 M	larks	
Answer ALL Questions												
PART A - $(5 \times 1 = 5 \text{ Marks})$												
1.	The number of bra graph.	nches in a tree is		th	e ni	ımbe	r of	bran	ches	in a	a CO	D1 - R
	(a) less than	(b) more than (c)	equa	al to		(d) tw	vice				
2.	Three equal resistances of 3Ω are connected in star. What is the resistance in CO2- U one of the arms in an equivalent delta circuit?											
	(a) 10 Ω	(b) 3Ω (c)	9Ω				(d) 2	27 Ω	2			
3.	In a series <i>RLC</i> circuit that is operating above the resonant frequency, the CO3-U current											
	(a) Lags the applied voltage (b) leads the applied voltage											
	(c) is in phase with the applied voltage (d) is zero											
4.	When a series RC circuit is connected to a constant voltage at $t = 0$, the CO4-R current passing through the circuit at $t = 0^+$ is											CO4-R
	(a) infinite (b) zero (c) V/R							(d)	(d) $V/\omega C$			
5.	Two coils connected in series have an equivalent inductance of 3H when CO5-R connected in aiding. If the self- inductance of the first coil is 1 H, what is the self inductance of the second coil? (Assume $M = 0.5$ H)											
	(a) 1 H	(b) 2 H	(c) 3	8 Н				(d) 4 H	I		
PART - B (5 x 3 = 15 Marks)												
6.	State Kirchoff's cir	cuital laws.								С	01-	R
7.	State Tellegen's the	eorem								С	02-	R
8.	Draw the pole	zero diagram for	the	give	n r	netwo	ork	func	ction	, C	03-	U
	$Z(s) = \frac{4(s+2)s}{(s+1)(s+3)}.$											

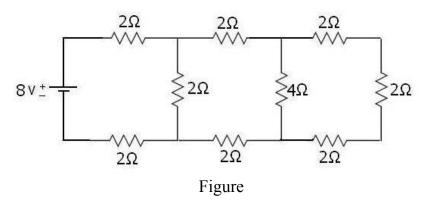

- 9. Define Z_{22} and Z_{21} .
- 10. Three identical loads are connected in delta to a three-phase supply of CO5- R $440 \ge 0^{\circ}$ V. If the phase current I_R is $15 \ge 0^{\circ}$ A, calculate the three line currents.

11. (a) Find v_0 if input voltage Vg=32 V using Supermesh analysis CO1-App (16) for the circuit given in Figure 5.



Or

(b) Using nodal analysis, find the current through the 4 ohm CO1-App (16) resistor in the circuit shown in figure.



12. (a) Find the current through 10 Ω resistance in the network CO2- App (16) shown in Figure by using superposition theorem?

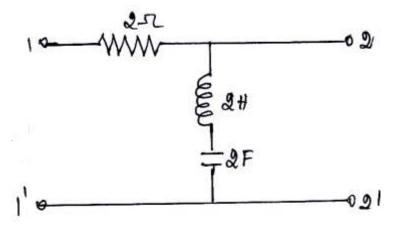
Or

(b) Find-out the value of current in 4Ω resistance for the network CO2- App (16) in Figure by using Norton's Theorem?

- 13. (a) A series RLC circuit consists of a resistance of $1K\Omega$ and an CO3-U (16) inductance of 100mH in series with capacitance of 10pF. If 100V is applied as input, determine
 - The resonant frequency
 - Maximum current in the circuit
 - Q factor of the circuit

The half power frequencies

Or


(b) (i) A series RLC network should resonate at 1MHz. CO3-U (10) Determine R,L and C if bandwidth is 5KHz and impedance is 50Ω at resonance.

(ii) A current source is applied to a parallel combination of CO3- App (6) R,L and C,where R=10 Ω ,L=1H and C=1 μ f.

- (a) Compute the resonant frequency.
- (b) Find the quality factor.
- (c) Calculate the value of the bandwidth.
- 14. (a) A series circuit consists of R-C in series with switch and CO4-E (16) supply voltage E. The capacitor has initial charge E0. Find the transient voltage VC (t) when the switch is closed at t=0.

Or

(b) Determine the admittance parameters of the two port CO4-App (16) network shown.

15. (a) Derive the expression for the resonant condition in single CO5-U (16) tuned and double tuned circuits.

Or

(b) (i) A three phase balanced delta connected load of (4.3+j7) Ω CO5- App (10) is connected across a 400V, 3- phase balanced supply. Determine the phase currents and line currents. Assume RYB sequence. Calculate the complex power drawn by the load.

(ii) Three line voltages of a 3-phase unbalanced source are CO5- App (6) Vab=40V, Vbc=-j40 V and Vca=-40+j40 V the source is connected to star connected impedance. Za= $(3+j4) \Omega$, Zb= $(8+j6) \Omega$ and Zc= $(5+0j) \Omega$. Determine the currents Ia, Ib ,Ic