Reg. No. :									
------------	--	--	--	--	--	--	--	--	--

Maximum: 100 Marks

Question Paper Code: 43402

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2021

Third Semester

Electronics and Communication Engineering

14UEC302 – DIGITAL ELECTRONICS AND DESIGN

(Regulation 2014)

Duration: Three hours

1.

2.

Answer ALL Questions

PART A - (10 x 1 = 10 Marks)

The binary equivalent of decimal 41 is						
(a) 101001	(b) 101010	(c) 010111	(d) 101101			
The simplified logic of the Boolean function $x'y'z + x'yz + xy'$ is						

- (a) x'yz+xyz (b) x'z + xy' (c) x'z' + x'y' (d) xz+xy
- 3. The difference output of half-subtractor is
 - (a) x'y' + xy (b) xy + xy' (c) xy + xy' (d) x'y + xy'
- 4. The circuit that generates the parity bit in the transmitter is
 - (a) Parity checker (b) Parity generator
 - (c) Both (a) and (b) (d) None of these
- 5. Which latch is called a transparent latch
 - (a) SR latch (b) JK latch (c) D latch (d) T latch
- 6. How many flip-flops are needed for a 4-bit counter?
 - (a) 2 (b) 3 (c) 4 (d) 6

7.	7. The voltage needed for a TTL IC power supply is					
	(a) 5V dc	(b) 10 V dc	(c) 2 V dc	(d) 20 V dc		
8.	3. Which of the following memories in non-volatile memory?					
	(a) ROM (c) Ferrite core r	nemory	(b) PROM (d) None of these			
9.	A circuit which do n	ot operate in syn	chronous with cloo	ek signal is		
	(a) Synchronous	sequential circui	its (b) As	synchronous sequential circuits		
	(c) FPGA			(d) combinational circuits		
10.	In this mode the input	its and outputs an	e represented by l	evels		
	(a) Fundamental	mode	(b) Pu	lse mode		
	(c) Both (a) and	(b)	(d) No	one of these		
	PART - B (5 x 2 = 10 Marks)					
11.	Obtain the canonical	sum of product	form of the function	n: Y = AB + ACD.		
12.	Draw the 4-bit binar	y divider.				
13.	Write the excitation	table of RS flip-f	lop.			
14.	Draw the circuit diag	gram of a TTL-N	AND gate with tot	em pole output.		
15.	List the design proce	dure of Asynchro	onous sequential c	ircuits.		
		PART - C	(5 x 16 = 80 Mark)	(S)		
16.	(a) Realize the follo Multilevel NO $F = \overline{A} B + B$	wing function as R - NOR gate $(C + D) + E\overline{F}$ (\overline{B}	Multilevel NANE	–NAND gate and (16)		
			Or			
	(b) (i) Simplify the	Boolean functio	n using K-man			
	(c) (c) 2 mpmy my my F (w, x,	$y, z) = \Sigma(0, 1, 2, 0)$, 4, 5, 6, 8, 9, 12, 1	3, 14). (8)		
	(ii) Implement t	he following fund	ction with NAND	gate only		
	F (x, y, z	$z)=\Sigma(0,6).$		(8)		

- 17. (a) (i) With logic diagram Truth table and explain about 3-to-8 decoder. (6)
 - (ii) Define multiplexer and implement the Boolean function with a suitable multiplexer.

$$F(A, B, C, D) = \Sigma(0, 1, 3, 4, 8, 9, 15).$$
⁽¹⁰⁾

Or

- (b) With Truth table, design BCD-to-excess-3 code converter and obtain its logic diagram.
 (16)
- 18. (a) (i) With neat diagram explain in detail about how the race around condition is avoided in master-slave JK flip-flop. (8)
 - (ii) Design 4-bit asynchronous up-down binary counter using T flip-flop. (8)

Or

- (b) (i) Realize D flip-flop using SR flip-flop. (8)
 - (ii) With neat illustration explain in detail about 4-bit parallel-in-serial out shift register.(8)
- 19. (a) With block diagram explain about PLA and realize the following functions in PLA:

$$F1 = \overline{A} \ B \ \overline{C} + A \ \overline{B} \ C + \overline{A} \ B \ C$$

$$F2 = A \ B + A \ C + \overline{A} \ B \ C$$
(16)

Or

- (b) (i) Differentiate registered PAL and configurable PAL (8)
 - (ii) Design a 4-bit binary-to gray code converter using PROM. (8)
- 20. (a) (i) Develop VHDL code for 3 to 8 decoder. (8)
 - (ii) Explain the method to eliminate static hazard in an asynchronous circuit with an example.(8)

Or

(b) Design serial binary adder using D-flip-flop. (16)

#