Reg. No.:					

Question Paper Code: 46424

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2021

Sixth Semester

Electrical and Electronics Engineering

14UEC624 - APPLIED DIGITAL SIGNAL PROCESSING

(Regulation 2014)

	(Co	ommon to EIE and IC	CE branches)					
Du	ration: Three hours		Max	imum: 100 Marks				
		Answer ALL Que	estions					
]	PART A - $(10 \times 1) = 0$	10 Marks)					
1.	1. The system $y(t) = 3x(t) + 5$ is a system.							
	(a) Non-linear	(b) Dynamic	(c) Non-Causal	(d) unstable				
2.	Integration of step signal re	ntegration of step signal results in signal.						
	(a) ramp	(b) delta	(c) Sinusoidal	(d) triangular				
3.	The LTIDT system with system function $h(n)=a^n u(n)$ is stable, only if							
	(a) a>1	(b) 1/a<∞	(c) a<∞	(d) a<1				
4.	Convolution in time domain	in frequency domain.						
	(a) addition	(b) multiplication	(c) compression	(d) expansion				
5.	The phase factors are multiplied before the add and subtract operations in							
	(a) DIT Radix 2 FFT		(b) DIF Radix 2 FFT(d) Both (a) and (c)					
	(c) Inverse DFT							

(c) 2

(d) 1

6. Compute the X(0) of the sequence $x(n)=\{1, 0, 1, 0, 1, 0, 1, 0\}$

(b) 4

(a) 8

	where N is the duration	of the sequence.					
	(a) $h(n+N-1)$	(b) $h(N+1-n)$	(c) $h(N-1-n)$	(d) h(n-N-1)			
8.	When s=LPF	en s= LPF is converted to HPF in analog domain.					
	(a) $\frac{s}{\Omega_c}$	(b) $\frac{\Omega_c}{s}$	(c) $s\Omega_c$	(d) s^2			
9.	The pipeline depth of T	MS320C50 is					
	(a) 6	(b) 4	(c) 2	(d) 0			
10.	The function of wait-sta	te generator is					
	(b) To insert wait-s(c) To insert wait-s	tate in internal and extate in data memory catate in program memorate in external bus cy	cycles ory cycles				
		PART - B (5 x 2 =	= 10 Marks)				
11.	Is the system $y(n) = x(-n)$) time invariant or no	t.				
12.	State Parseval's relation	s in Z transform.					
13.	List any two properties	of DFT.					
14.	What is the necessary ar filter?	nd sufficient condition	n for linear phase ch	aracteristic in FIR			
15.	What is pipelining?						
		PART - C (5 x 16	= 80 Marks)				
16.	(a) Show that unit imput an LTI system. All invariant and causal (i) $y(t) = x(t/3)$ (ii) $y(n) = x(-n)$ (iii) $y(t) = x(t^2)$ (iv) $y(n) = x^2(2n)$	so, determine whether.		sponse for any input for estems are linear, time-			
		Or					

7. The condition for linear phase characteristic in FIR filter is, the impulse h(n)=_____

- (b) State and prove sampling theorem for low pass band limited signal and explain the process of reconstruction of the signal from its samples. (16)
- 17. (a) Using residue method find the inverse Z transform of

$$X(z) = [1 + 3z^{-1}] / [(1 + 3z^{-1} + 2z^{-2})], |z| > 2.$$
(16)

Or

- (b) State and prove the time shifting and convolution property of Z-transform. (16)
- 18. (a) Evaluate 8-point DFT of the following sequence using DIT-FFT $x[n]=\{2,1,2,1,1,2,1,2\}.$ (16)

Or

- (b) Derive the butterfly diagram of 8 point radix-2 decimation in Time FFT algorithm. (16)
- 19. (a) Design a digital low-pass Butterworth IIR filter using bilinear z-transform with a 3dB cut-off frequency of 2kHz and minimum attenuation of 30dB at 4.25kHz for a sampling rate of 10kHz. (16)

Or

(b) Design a filter with
$$H_d(e^{j\omega}) = \begin{cases} e^{-j3\omega}, & \frac{-\pi}{4} \le |\omega| \le \frac{\pi}{4} \\ 0, & \frac{\pi}{4} < |\omega| \le \pi \end{cases}$$

Using a Hamming window with N = 7. (16)

20. (a) With a neat block diagram explain in detail about the architecture of TMS320C50. (16)

Or

- (b) (i) Draw the block diagram of Harvard architecture of a DSP and explain its blocks. (8)
 - (ii) Explain various addressing modes of TMS processor. (8)