Reg. No. :					

Question Paper Code: 41044

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2021

Fourth Semester

Electronics and Communication Engineering

14UMA424 - PROBABILITY AND RANDOM PROCESS

(Regulation 2014)

Maximum: 100 Marks

Answer ALL Questions

Duration: Three hours

(Statistical Tables are permitted)

PART A - (10 x 1 = 10 Marks)

1.	The probability of impossi	ble event is		
	(a) 1	(b) 0	(c) 2	(d) 0.5
2.	In which probability distrib	bution, Variance and Mea	n are equal?	
	(a) Binomial	(b) Poisson	(c) Geometric	(d) None of these
3.	If two random variables X	and Y are independent, th	en covariance is	
	(a) θ	(b) 1	(c) 0	(d) λ
4.	If $X=Y$ then correlation co	efficient between them is		
	(a) <i>0</i>	(b) ∞	(c) <i>l</i>	(d) ±1
5.	The sum of two independe	nt Poisson process is		
	(a) poisson process		(b) marcov process	
	(c) random process		(d) stationary	
6.	A Non-Null Persistent and	Aperiodic state is called		
	(a) Return state	(b) Irreducible	(c) Ergodic	(d) Recurrent
7.	$R_{XX}(\tau)$ is an	function of τ		
	(a) positive	(b) 1	(c) even	(d) odd
8.	If $R_{xy}(\tau) = \mu_X \times \mu_Y$ then λ	X(t) and $Y(t)$ are called		
	(a) Independent	(b) Orthogonal	(c) Stationary	(d) none of these

9.	Α	is a fund	_ is a functional relationship between the input $X(t)$ and the output $Y(t)$					
		(a) system	(b) process	(c) functional	(d) stationary			
10.	. Co	louted Noise means	s a noise that is					
		(a) white	(b) not white	(c) coloured	(d) none of these			
			PART - B (5 x 2 =	= 10 Marks)				

- 11. If a Random variable X has the moment generating function $M_x(t)=\frac{2}{2-t}$. Determine the variance of X.
- 12. Define covariance.
- 13. Outline discrete random process. Give an example for it.
- 14. State Winear-Khinchine theorem.
- 15. Describe a linear system.

and y.

PART - C (5 x
$$16 = 80$$
 Marks)

- 16. (a) (i) In a bolt factory machines *A*, *B*, *C* manufacture respectively 25%, 35% and 40% of the total. Of their total output 5%, 4% and 2% are defective bolts. A bolt is drawn at random from the product and is found to be defective. What are the probabilities that it was manufactured by machines *A*, *B* and *C*? (8)
 - (ii) Deduce the moment generating function of exponential distribution and hence find its mean and variance.(8)

Or

(b) A random variable X has the following probability function

Value of x	0	1	2	3	4
P(x)	k	3 <i>k</i>	5 <i>k</i>	7 <i>k</i>	9k

Find the value of k, P(x < 3) and distribution function of x. (16)

- 17. (a) (i) The joint probability density function of a bivariate random variable (X, Y) is $f(x, y) = \begin{cases} k(x + y), 0 < x < 2, 0 < y < 2\\ 0, elsewhere \end{cases}$ Find (1) the value of k (2) the marginal probability density of x and y (3) x and y independent. (8)
 - (ii) The two lines of regression are 8x 10y + 66 = 0, 40x 18y 214 = 0. The variance of x is 9. Evaluate the mean values of x and y and the Correlation coefficient between x

(8)

41044

(b) The joint probability distribution of *X* and *Y* is given below:

Y X	-1	1
0	1/8	3/8
1	2/8	2/8

Find the correlation coefficient between *X* and *Y*.

18. (a) Generalize the postulates of a Poisson process and derive the probability distribution for the Poisson Process. Also Show that the sum of two independent Poisson process is again a Poisson process. (16)

Or

- (b) (i) Explain the classification of random process. (8)
 - (ii) The transition probability of a Markov chain $\{X\}$, $n = 1, 2, 3, \dots$, having 3 states

1, 2 and 3
$$P = \begin{pmatrix} 0.1 & 0.5 & 0.4 \\ 0.6 & 0.2 & 0.2 \\ 0.3 & 0.4 & 0.3 \end{pmatrix}$$
 and the initial distribution is $p^{(0)} = (0.7, 0.2, 0.1).$

Find (1)
$$P_{X_2} = 3$$
 and (2) $P = \{X_3 = 2, X_2 = 3, X_1 = 3, X_0 = 2\}.$ (8)

- 19. (a) (i) Define cross-correlation function and write the properties of cross-correlation function. (8)
 - (ii) State and Prove Wiener-Khinchine theorem.

Or

(b) If the power spectral density of a WSS process is given by $S(\omega) = \begin{cases} \frac{b}{a} (a - |\omega|), & \text{for } |\omega| \le a \\ 0, & \text{for } |\omega| > a \end{cases}$

Find the autocorrelation function of the process.

20. (a) If $\{X(t)\}$ is a WSS process and if $y(t) = \int_{-\infty}^{\infty} h(u)X(t-u)du$ then Prove that

(i)
$$R_{XY}(\tau) = R_{XX}(\tau) * h(-\tau)$$

(ii) $R_{YY}(\tau) = R_{XY}(\tau) * h(\tau)$
(iii) $S_{XY}(\omega) = S_{XX}(\omega)H^*(\omega)$
(iv) $S_{YY}(\omega) = S_{XX}(\omega)|H(\omega)|^2$
(16)

41044

(16)

(8)

(16)

- (b) (i) The input to a time- invariant, stable linear system is a WSS process, Enumerate that the output will also be a WSS process.(8)
 - (ii) If X(t) is a band limited process such that $S_{xx}(\omega) = 0$, $|\omega| > \sigma$, then formulate $2[R_{xx}(0) - R_{xx}(\tau)] \le \sigma^2 \tau^2 R_{xx}(0).$ (8)