	Reg	. No. :										
Question Paper Code: 45404												
B.E. / B.Tech. DEGREE EXAMINATION, DEC 2021												
Fifth Semester												
Electronics and Communication Engineering												
14UEC504 - TRANSMISSION LINES AND WAVEGUIDES												
(Regulation 2014)												
D	Duration: Three hours							Max	kimu	m: 1	00 M	Iarks
Answer ALL Questions												
	(Smith c	hart mag	y be j	perm	itted)						
PART A - $(10 \times 1 = 10 \text{ Marks})$												
1.	. The circle diagram may be used to find the impendence of a line m of any chosen length.								any			
	(a) Input (b) Characteristics				ics							
	(c) Output (d) None of these					se						
2.	2. An eighth wave line is used to transform any resistance to an impendence with a magnitude equal to Roof the line or to obtain a magnitude match between a resistance of any value and a source ofinternal resistance.											
	(a) Ri (b) Ro	(c) Ro	of			(d) I	Rif				
3.	Condition for distortion less line is											
	(a) RG = LC (b) $\alpha = \sqrt{RG}$	(c) LG	= R	C		(d) [$\beta = \alpha$	o√LC	3		
4.	4. Aband is the range of frequencies or wavelengths that can pass through a filter without being attenuated.											

(c) Base

(d) Low

(a) Pass

(b)Band

5.	Reflection Coeffici	ent K=Voltag	ge at load /Incident v	oltage at the load.				
	(a) Reflected	(b) Incident	(c) Reflection	(d) Inflection				
6.	The distance the w radians is call		ne line while the ph	ase angle is changing through				
	(a) 1	(b) 2	(c) 2.5	(d) 1.5				
7.	Another name of H	wave is						
	(a) TM wave	(b) TE wave	(c) TEM wave	(d) Circular wave				
8.	Dominant mode me	eans						
	(a) highest cut-off frequency(c) guide wavelength		(b) lowest cut-off wavelength(d) lowest cut-off frequency					
9.	Write the Dominant modes of TE waves in rectangular waveguide							
	(a) TE_{10}	(b) TE ₀₁	(c) TE ₀₀	(d) TE ₁₁				
10.	TEM mode sometimes called as							
	(a) dominant m(c) degenerative		(b) principal mod(d) parallel mode					
		PART - B	$(5 \times 2 = 10 \text{ Marks})$					
11.	Define propagation	constant.						
12.	Define reflection co	pefficient.						
13.	8. Why is a quarter wave line called as impendence inverter?							
14.	Define phase veloc	ity.						
	What are the root v	•	odes?					
			5 x 16 = 80 Marks)					
16	(a) (i) Design a o	·	,	the expression for phase shift				
10.	and attenua	_	ss filler and derive	the expression for phase shift (10)				
	` ′	equency will a pro f_c , have an attenuation	• •	w pass filter having a cut off (6)				

	(b)	(i) Derive the current and voltage ratio as exponentials propagation constant. (8	3)					
		(ii) Design m derived T type low pass filter to work into load of 500 Ω with cut-of frequency at 4 kHz and peak attenuation at 4.15 kHz.	off 8)					
17.	(a)	Derive the expression for the input impedance of the dissipation less line and the expression for the input impedance of a quarter wave line. Also discuss the application of quarter wave line.	he					
		Or						
	(b)	Design a single stub match for a load of 150 + j225 ohms for a 75 ohms lin at 500 MHz using smith chart.						
18.	terr	A lossless transmission line with $Z_0 = 75~\Omega$ and of electrical length $l = 0.3\lambda$ minated with load impedance of $Z_R = (40 + j20)~\Omega$. Determine the reflection efficient at load, SWR of line, input impedance of the line.	on					
		Or						
	(b)	Explain about transverse electromagnetic waves between a pair of perfect conducting planes.	-					
19.	(a)	Determine the solution of electric and magnetic fields of TE waves guided alor rectangular waveguides. (10	_					
Or								
	(b)	Explain about the excitation modes in rectangular wave guide. (16	5)					
20.	(a)	Derive the field equation of TM waves in rectangular waveguide. (10)	6)					
		Or						
	(b)	What is meant by cavity resonator? Derive the expression for the resonant frequence of the rectangular cavity resonator. (16)	-					