	Α	Reg. No.	:									
Question Paper Code: 51005												
B.E. / B.Tech. DEGREE EXAMINATION, DEC 2021												
	First Semester											
Computer Science and Engineering												
15UCY105 - APPLIED CHEMISTRY												
(Common to EEE, ECE, EIE, IT and Biomedical Engineering)												
(Regulation 2015)												
Dur	ation: Three hours							M	laxir	num	: 100) Mark
Answer ALL Questions												
PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$												
1.	. Arrange the covalent bond configurations sp ³ -sp ³ , sp ² -sp ² and sp-sp in CO1- increasing order of strength.											
	(a) $sp^3-sp^3 < sp-sp < sp^2-sp^2$ (b) $sp^2-sp^2 < sp^3-sp^3 < sp-sp^2$				sp							
	(c) $sp^3-sp^3 < sp^2-sp^2 < sp-sp$			(d) $sp-sp < sp^2-sp^2 < sp^3-sp^3$								
2.	The bond order in oxygen is						CO1-					
	(a) 1	(b) 2	(c)	3				((d) 4			
3.	Dry corrosion is a process of contact of two me			etals							CO2-	
	(a) Indirectly	(b) Directly	(c)	Oppo	ositel	у		((d) R	lever	sibly	Y
4.	Using the data given	below find out the strong	gest red	ucing	ager	nt.						CO2-
	$E^{-}Cr_{2}O_{7}^{2-}/Cr^{3+} = 1.33V, E^{-}Cr^{3+}/Cr = -0.74V, E^{-}Cl_{2}/Cl^{-} = 1.36V, E^{-}MnO_{4}^{-}/Mn^{2+} = 1.51V.$											
	(a) Cl ⁻	(b) Cr	(c)	Cr ³⁺				((d) N	/In ²⁺		
5.	Primary batteries are	examples of										CO3-
	(a) Reversible cells	sible cells (b) Fuel cells (c) Sensors (d) Irreversible ce					e cells					
6.	In ion – selective elec	trodes the change in p^H	is sens	ed by								CO3-
	(a) pellet electrode		(b) r	efere	nce e	lectr	ode					
	(c) glass membrane		(d) g	glass e	electr	ode						
	· · · -											

7.	Wh	at is the range of v	isible region?			CO4- R
7.		$2200-400 \text{ nm} \qquad (b) 400-1000 \text{ nm} \qquad (c) 400-850 \text{ nm} \qquad (d) 400$				
8.		Which of the following transitions is the highest energy transition?				
0.		n to σ^*	(b) n to π^*	(c) σ to σ^*	(d) π to π	CO4- R *
9.				er is referred to as its	(d) // to //	CO5- R
).		functionality	(b) tacticity	() $() $ $()$	(d) degree of polymeri	
10.		The fibre which is made from acrylonitrile as monomer				
101		Rayon	(b) Acrylic fibre	(c) Nylon	(d) PVC	CO5- R
	PART - B (5 x 2= 10 Marks)					
11.	Dist	inguish between i		nd covalent compound	ls.	CO1- R
12.	Identify the types of corrosion in the following and explain the mechanism (i) Iron					CO2- R
		• • • •		stainless steel parts		
13.	Differentiate primary cells and secondary cells					CO3- R
14.						CO4- App
	concentration of the solution, given extinction Co efficient $\in = 4,000 \text{ dm}^3 \text{mol}^{-1} \text{ cm}^{-1}$					
15.	Give	e the synthesis an	d uses of Nylon 66			CO5- R
				$-C (5 \times 16 = 80 \text{ Mark})$,	(16)
16.						
	formation of Oxygen (O_2) and Hydrogen (H_2) using molecular orbital theory.					
			0			(16)
	(b) Explain the concept of bonding in a Homo and hetero diatomic CO1-U molecule using MO Theory					
		molecule using r	ine incory			
17.	(a)			nt of single electrod	e potentially CO2-U	(16)
		Poggendroff's n	o O	r		
	(b)				ng the metal CO2-U	(16)
		and the environn	nent? Discuss in de	tail.		
18.	(a)	(i) Explain H ₂ -O	2 fuel cell. Give its	merits and demerits	CO3- U	(8)
		(ii) What are che	mically modified e	electrodes? Explain the	eir types. CO3-U	(8)
			0	r		

	(b)	Describe the construction and working of lead acid storage battery. Compare the lead acid storage battery with that of the fuel cell.	CO3- U	(16)
19.	(a)	Summarize the working principles of thermo gravimetric analysis Or	CO4- U	(16)
	(b)	(i) Explain with a schematic diagram the working of Differential Scanning Calorimetry (DSC). List the merits of DSC.	CO4- U	(8)
		(ii) Explain the thermo gravimetric analysis of any one chemical compound with neat block diagram.	CO4- U	(8)
20.	(a)	(i) Discuss the methods available in chemical and electrochemical doping of conducting polymer in detail	CO5- U	(8)
		(ii) What is OLED? Explain its structure, advantages and disadvantages of OLED.	CO5- U	(8)
		Or		
	(b)	What are liquid crystals? Discuss the applications of liquid crystals in	CO5- U	(16)

the field of electronics.

##