A	
Δ	

Reg. No.:					

Question Paper Code: 51004

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2021

First Semester

Mechanical Engineering

15UCY104 - ENGINEERING CHEMISTRY

		(Common to Cl	hemical Engineering)				
		(Regul	lation 2015)				
Dur	ation: Three hours			Maximum: 100 Marks			
		Answer A	ALL Questions				
		PART A - (1	$0 \times 1 = 10 \text{ Marks}$				
1.	Which of the follo	Which of the following is expected to have maximum bond strength					
	(a) ClF	(b) Cl ₂	(c) BaCl ₂	(d) BaS			
2.	Linear geometry	is seen with which of th	e following	CO1- R			
	(a) H ₂ S	(b) H ₂ O	(c) CH ₄	(d) C_2H_2			
3.	Corrosion of a scr	rew in the clamp of the	door is an example fo	r CO2- R			
	(a) pitting		(b) crevice				
	(c) wirefence		(d) differential ac	eration			
4.	Which of the fo	ollowing does not pro-	mote the differential	aeration CO2- R			
	(a) Accumulation	of dirt	(b) Partially cove	ering metals			
	(c) Wire fence kin	nd of structures	(d) Accumulation	n of oxygen			
5.	All spontaneous p	process are accompanie	d byin entro	ppy. CO3- R			
	(a) Decrease	(b) Increase	(c) Same	(d) No change			
6.	The entropy of an	isolated system can ne	ver	CO3- R			
	(a) Increase	(b) Decrease	(c) Be zero	(d) None of the above			
7.	Water gas is			CO4- R			
	(a) CO + H ₂ O	(b) CO + H ₂	(c) $CO_2 + N_2$	(d) $CO_2 + N_2O$			

8.		ge of nignly pr ng helps in		dary air in puiverized	a ruei		CO4-R
	(a) Heats fuel at pace (b) Takes less time to finish the process						
	(c) I	Rapid flame prop	agation (d)	Reduces the troubles an	nd problems	caused in the	system
9.	Bras	ss alloy containin	g mainly				CO5- R
	(a) (Cu and Zn	(b) Cu and S	n (c) Zn and P	b (d) C	Cu and Fe	
10.	Flue	e gas is a mixture	of				CO5- R
	(a) (CO,CO ₂ & O ₂	(b) CO ₂ CO ₂	& N_2 (c) CO_1CO_2	& S ₂	(d) CO, CO ₂	& Ash
			PART	$-B (5 \times 2 = 10 \text{ Marks})$			
11.	wha	t is meant by bon	d order?				CO1- R
12.	•	gest the most su cosion a) iron ro		s for protecting the for rete b)bolt	ollowing me	tals from	CO2- R
13.		*		l when the atmospheric water is 545.5 cal/g.	c pressure is	s 528 mm	CO3- R
14.	. What is a flue gas?						
15.	Diff	Perentiate the com	position betwe	en Nichrome & Stainle	ess steel.		CO5- R
			PAR	T - C (5 x 16= 80 Mar	ks)		
16.	(a)	(i) Compare the N_2^+	stability and b	ond order of CO ⁺ , CO,	NO, NO ⁺ ,	CO1- App	(8)
		(ii) Predict the h Be in BeF ₂	ybridization o	f S in SF ₆ , Xe in XeF ₄ ,	N in NO ₃ ,	CO1- App	(8)
				Or			
	(b)	1.7		nergy level diagram to e a triple bond, H ₂ , a si		CO1- App	(8)
		(ii) Explain Faja	an's rule in deta	il.		CO1- App	(8)
17.	(a)	(i) Derive the N	ernst equation	for electrode potential.		CO2- App	(8)
			•	and by hybridization. If methane molecule. Or	Demonstrate	CO2- App	(8)

	(b)	(i) Calculate the EMF of a cell Pt/Br ₂ (g)(0.1 atm)/Br ⁻ (0.5 M)/Br ₂ (g)(1 atm)/Pt at 298 K	CO2- Ana	(8)
		(ii) Describe the electroplating process of gold.	CO2- Ana	(8)
18.	(a)	(i) Derive Clausius-Clapeyron equation.	CO3- Ana	(8)
		(ii) What is meant by eutectic point? Describe the reduced phase rule with one example.	CO3- Ana	(8)
		Or		
	(b)	(i) Derive an expression for the entropy change for an ideal gas.	CO3- Ana	(8)
		(ii) Gibbs free energy of a reaction at 300 K and 310 K are -29kcal and -29.5 kcal respectively. Determine its ΔH and ΔS at 300 K.	CO3- Ana	(8)
19.	(a)	(i) Describe the manufacture of metallurgical coke by Otto-Haffman's oven method.	CO4- U	(8)
		(ii) A Explain the proximate and ultimate analysis of coal.	CO4- U	(8)
		Or		
	(b)	(i) How can you analyze flue gas by Orsat apparatus?	CO4- U	(8)
		(ii) Differentiate between NCV and GCV	CO4- U	(8)
20.	(a)	(i) Discuss the composition, characteristics and uses of non ferrous alloy.	CO5- U	(8)
		(ii) Write a note on ceramic matrix composites.	CO5- U	(8)
		Or		
	(b)	(i) State classification of composite and the need for composite.	CO5- U	(8)
		(ii) Describe in detail about surface treatment methods.	CO5- U	(8)