Question Paper Code: 41002

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2021

First Semester

Civil Engineering

14UMA102 - ENGINEERING MATHEMATICS - I

(Common to ALL branches)

(Regulation 2014)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions.

PART A - (10 x 1 = 10 Marks)

1. If $A = \begin{pmatrix} 2 & 1 & 4 \\ 0 & 3 & 6 \\ 0 & 0 & 5 \end{pmatrix}$ then eigen values of A^{-1} are

(a) 2, 3, 5 (b) 2, 1, 4 (c) $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{5}$ (d) $\frac{1}{2}$, 1, $\frac{1}{4}$

2. If 0, 3, 4 are eigen values of a square matrix A of order 3 then |A| =

(a) 12 (b) 0 (c) ∞ (d) $\frac{1}{12}$

3. The harmonic series $\sum \frac{1}{n^p}$ is convergent if (a) p > 1 (b) p < 1 (c) p = 1 (d) $p \le 1$

4. D'Alembert's test is also called

(a) Ratio test (b) Root test (c) Abel's test (d) none of these

5. The radius of curvature of the curve $y = e^x$ at (0,1) is

(a)
$$2\sqrt{2}$$
 (b) $\sqrt{2}$ (c) 2 (d) $2\sqrt{3}$

6. The envelope of the family of lines y = x + a/m, *m* being a positive integer

(a)
$$y^2 = 4ax$$
 (b) $x^2 = 4ay$ (c) $x^2 + y^2 = a^2$ (d) $xy = a^2$

7. Let *u* and *v* be functions of *x*, *y* and $u = e^{v}$. Then *u* and *v* are

(a) Functionally dependent	(b) Functionally independent
(c) Functionally linear	(d) Functionally non-linear

8. A stationary point of f(x, y) at which f(x, y) has neither a maximum nor a minimum is

called

(a) Extreme point(c) Saddle point		(b) Max-Min point(d) Nothing can be said		
9.	The value of $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} dy$	dx is		
	(a) $\frac{\pi a^2}{4}$	(b) $\frac{\pi a^2}{2}$	(c) $\frac{\pi a^2}{8}$	(d) πa^2

10. The value of the double integral $\int_0^{\pi} \int_0^a r \, dr \, d\theta$ is

- (a) πa^2 (b) $\frac{\pi a^2}{2}$ (c) $\frac{\pi r^2}{2}$ (d) πr^2 PART - B (5 x 2 = 10 Marks)
- 11. Determine the nature of the quadratic form $x_1^2 + 3x_2^2 + 6x_3^2 + 2x_1x_2 + 2x_2x_3 + 4x_3x_1$ without reducing to canonical form.
- 12. State Leibnitz's test.
- 13. Find the radius of curvature at the point (c, c) on the curve $xy = c^2$.
- 14. If $x=u^2 v^2$ and y=2uv, find the Jacobian of x and y with respect to u and v.
- 15. Indicate the region of integration of $\int_{0}^{\infty} \int_{\frac{x^2}{x^2}} x dy dx$.

PART - C ($5 \times 16 = 80$ Marks)

16. (a) (i) Find the eigen values and eigen vectors of the matrix $\mathbf{A} = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$. (8)

(ii) Using Cayley Hamilton theorem, find the inverse of the matrix $\begin{pmatrix} 2 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 2 \end{pmatrix}$. (8)

Or

- (b) Reduce the Q.F $x^2 + y^2 + z^2 2xy 2yz 2zx$ in to a canonical form by an orthogonal transformation. (16)
- 17. (a) (i) Show that the sum of the series $\frac{15}{16} + \frac{15}{16} \times \frac{21}{24} + \frac{15}{16} \times \frac{21}{24} \times \frac{27}{32} + \cdots = \frac{47}{9}$. (8)
 - (ii) Show that the series $1 2 + 3 4 + ... \infty$ oscillates infinitely. (8)

Or

(b) Prove that if
$$b-1 > a > 0$$
, the series $1 + \frac{a}{b} + \frac{a(a+1)}{b(b+1)} + \frac{a(a+1)(a+2)}{b(b+1)(b+2)} + \dots$ converges.
(16)

18. (a) (i) Find the radius of curvature at any point of the cycloid

- $x = a(\theta + \sin \theta)$ and $y = a(1 \cos \theta)$ (8)
- (ii) Find the evolute of the parabola $y^2 = 4ax$. (8)

Or

(b) Considering the evolute as the envelope of normals, find the evolute of $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. (16)

19. (a) Given the transformations $u = e^x \cos y$ and $v = e^x \sin y$ and that ϕ is a function of u and v and also of x and y, prove that $\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = (u^2 + v^2) \left[\frac{\partial^2 \phi}{\partial u^2} + \frac{\partial^2 \phi}{\partial v^2} \right]$ (16)

3

41002

(b) (i) If $g(x, y) = \psi(u, v)$, where $u = x^2 - y^2$, v = 2xy, then prove that

$$\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} = 4(x^2 + y^2) \left(\frac{\partial^2 \psi}{\partial u^2} + \frac{\partial^2 \psi}{\partial v^2} \right).$$
(8)

(ii) Find the Jacobian of y_1 , y_2 , y_3 with respect to x_1 , x_2 , x_3 where $y_1 = \frac{x_2 x_3}{x_1}$, $y_2 = \frac{x_1 x_3}{x_2}$,

$$y_{3} = \frac{x_{1}x_{2}}{x_{3}}.$$
 (8)

20. (a) Change the order of integration and hence evaluate it $\int_{0}^{4a} \int_{x^2} \int_{xydydx} \int_{0}^{x^2} (16)$

Or

- (b) (i) Evaluate $\iint z^3 dS$, where is S is the positive octant of the surface of the sphere. (8)
 - (ii) Evaluate $\iiint_{v} xyz dx dy dz$, where V is the volume of space inside the tetrahedron bounded by the planes x = 0, y = 0, z = 0 and $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$. (8)