1

Question Paper Code: 42002

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2021

Second Semester

Civil Engineering

14UMA202 - ENGINEERING MATHEMATICS - II

(Common to ALL Branches)

(Regulation 2014)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions.

PART A - (10 x 1 = 10 Marks)

1.	The roots of $(D^2+2)y$ are			
	(a) ±2	(b) ±2 <i>i</i>	(c) $\pm i\sqrt{2}$	(d) √2
2.	The particular integral of $(4D^2 - 4D + 1)y = 4$ is			
	(a) -4	(b) 4	(c) -2	(d) -3
3.	The gradient of a scalar function is defined as			
	(a) ∇/\emptyset	(b) $\nabla * \emptyset$	(c) Ø∇	(d) $\nabla \emptyset$
4.	By stokes theorem, $\int \vec{r} d\vec{r} =$			
	(a) π	° (b) 1	(c) 0	(d) None of these
5.	The derivative of $f(z)$ at z_0 is			
	(a) <i>l</i>	(b) f(z)	(c) $f(z_0)$	(d) $f'(z_0)$

6. The invariant points of $w = \frac{2z-5}{z+4}$ are

(a)
$$z = 2, -1$$
 (b) $z = -1 \pm 2i$ (c) $z = 0, 1$ (d) $z = 2 \pm 3i$

- 7. Which of the following is not an analytic function?
 - (a) sin z (b) z (c) sinh z (d) \overline{z}
- 8. Conformal mapping is a mapping which preserves angle
 - (a) in magnitude (b) in sense
 - (c) both in magnitude and sense
- (d) Either in magnitude or in sense

9.
$$L^{-1}\left[\frac{1}{s^{2} + a^{2}}\right] =$$
(a) $\frac{\sinh at}{a}$ (b) $\frac{\sin at}{a}$ (c) $\sinh at$ (d) $\sin at$

- 10. Laplace transforms is an _____ transform.
 - (a) Discrete(b) Discrete time(c) Data independent(d) Integral

PART - B (5 x
$$2 = 10$$
 Marks)

- 11. Solve $(D^4 2D^3 + D^2)y = 0$.
- 12. Find *grad* ϕ at (1,0,2) where $\phi = x^2y + 2xz^2 8$.
- 13. Find the values of a & b such that the function $f(z) = x^2 + ay^2 2xy + i(bx^2 y^2 + 2xy)$ is analytic.
- 14. State Cauchy's integral formula.
- 15. Find the Laplace transform of $\sin 3t \sin 5t$.

PART - C (5 x
$$16 = 80$$
 Marks)

16. (a) (i) Solve the equation $(1+2x)^2 y'' - 6(1+2x)y' + 16y = 8(1+2x)^2$. (8)

2

(ii) Solve the equation $(D^2 + 4D + 3)y = e^{-x}sinx.$ (8)

42002

(b) (i) Solve
$$\frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} = \frac{12\log x}{x^2}$$
. (8)

- (ii) The number N of bacteria in a culture grew at a rate proportional to N. The value of N was initially 100 and increased to 332 in 1 hour. What was the value of N after 3/2 hours?
- 17. (a) Verify Stoke's theorem for $\vec{F} = (2x y)\vec{i} yz^2\vec{j} y^2z\vec{k}$ where S is the upper half surface of the sphere $(x^2 + y^2 + z^2) = 1$ and C is the circular boundary on Z = 0 plane. (16)

- (b) Verify Gauss divergence theorem for \$\vec{F}\$ = \$(x^2-yz)\$\vec{i}\$ + \$(y^2-xz)\$\vec{j}\$ + \$(z^2-xy)\$\vec{k}\$ and \$S\$ is the surface of the rectangular parallelepiped bounded by \$x = 0\$, \$x = a\$, \$y = 0\$, \$y = b\$, \$z = 0\$ and \$z = c\$.
- 18. (a) Find the Bilinear transformation that maps $z=\infty$, I, 0 in to the points $w=0, -i, \infty$ respectively. Also find its fixed Points. (16)

Or

(b) (i) Show that the function $u = \log \sqrt{x^2 + y^2}$ is harmonic and also find its conjugate.

(8)

(ii) Obtain the bilinear transformation which maps the points z = 1, *i*, -1 onto the points w = 0, 1, ∞ respectively. (8)

19. (a) Evaluate
$$\int_0^{2\pi} \frac{d\theta}{2+\cos\theta}$$
 by contour integration. (16)

Or

(b) (i) Show that the function $u = log \sqrt{x^2 + y^2}$ is harmonic and also find its conjugate

(8)

(ii) Evaluate
$$\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2+1)(x^2+4)}$$
 using contour integration. (8)

20. (a) (i) Find the Laplace Transform of the square-wave function of period 'a' given by

$$f(t) = \begin{cases} 1, & 0 < t < \frac{a}{2} \\ -1, & \frac{a}{2} < t < a \end{cases}$$
(8)

(ii) Using Convolution theorem evaluate
$$L^{-1}\left[\frac{1}{(s+1)(s+2)}\right]$$
. (8)

Or

(b) (i) Solve $y'' + 4y' + 4y = e^{-t}$, y(0)=0 and y'(0) = 0 using Laplace transform. (8) (ii) Compute y(1,1) by using Runge-Kutta method of fourth order, given $\frac{dy}{dx} = y^2 + xy$, y(1) = 1. (8)