Question Paper Code:94023

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2021

Fourth Semester

Civil Engineering

19UMA423 - NUMERICAL METHODS

Common to Chemical Engineering

(Regulation 2019)

Duration: Three hours

Maximum: 100 Marks

PART A 10*2 = 20 Marks

Answer any ten of the following questions

1.	Iteration method converges if $ g^{1}(x) $	CO1- U	
2.	What do you mean by diagonally dominant?	CO1- R	
3.	Gauss Seidel iteration converges if the coefficient matrix is		
4.	In Cubic Spline, determine the value of M ₀ and M _n		
5.	Newton's divided difference formula used only for		
6.	State Lagranges interpolation formula for three set of values (X_0, Y_0) , (X_1, Y_1) and (X_2, Y_2) are given	CO2- R	
7.	Truncation error in Trapezoidal rule ?	CO3- R	
8.	State Simpson's $\frac{1}{3}$ rule to evaluate $\int_{a}^{b} f(x) dx$	CO3- U	
9	Write down Romberg's formula for I_1 and I_2 as well as I_2 and I_3	CO3- R	
10	Using Euler's method find y(0.1) given $\frac{dy}{dx} = 1 + y^2$, y(0) =0	CO6- AP	
11	Using Taylor's series method find $y(1.1)$ given $y' = x + y$ with $y(1) = 0$	CO6- AP	
12	Which method is better ? Taylor's series or RK method. Why?	CO6- U	
13	Bender-Schmidt recurrence equation is valid if $\lambda =$	CO5- U	
14	Classify $u_{xx} - 2u_{xy} + u_{yy} = 0$	CO5- AP	
15	PDE of second order, if B^2 -4AC> 0 then	CO5- U	

PART B3*10 = 30 MarksAnswer any three of the following questions1Solve for a positive root of
$$3x - \cos x - 1 = 0$$
 by Newton's Raphson
method.CO1 - App(16)2Using Newton's divided difference formula find f(8) for the dataCO2- App(16)2Using Newton's divided difference formula find f(8) for the dataCO2- App(16)3 $\overline{X} \quad 4 \quad 5 \quad 7 \quad 10 \quad 11 \quad 13 \\ \hline Y \quad 48 \quad 100 \quad 294 \quad 900 \quad 1210 \quad 2028$ (16)3Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ with 6 equal intervals by (i) Trapezoidal rule
(i) Simpson's $\frac{1}{3}$ rule.CO3- App4Using R-K method of fourth order, solve $\frac{dy}{dx} = \frac{y^2 - y^2}{y^2 + x^2}$ with $y(0) = 1$ at
 $x = 0.2$ CO4- App5Solve $\frac{\partial^2 u}{\partial x^2} = 2 \frac{\partial u}{\partial t}$, $u(0,t) = 0$, $u(4,t) = 0$, $u(x,0) = x(4 - x)$. Take $h = 1$
and find the values of u up to $t = 5$ using Bender-Schmidt's difference
equationCO1 - App6Solve $27x + 6y - z = 85$, $6x + 15y + 2z = 72$, $x + y + 54z = 110$ by Gauss
Seidel methodCO1 - App7Using Newton's forward interpolation formula find f(3) for the following
CO2- AppCO2- App

Х	2	4	6	8
Y	1	2	1	10

8 Using three point Gaussian quadrature formula to find the value of CO3-App (16) $\int_{-5}^{5} \frac{dx}{dx}$

$$\int_{1} x$$

data