A Reg. No. :										
--------------	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 54022

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2021

Fourth Semester

Civil Engineering

15UMA422 - NUMERICAL METHODS

	(Com	mon to EEE, EIE and C	hemical Engineering)		
		(Regulation 2	2015)		
Dur	ation: Three hours		Maxim	um: 100	Marks
		Answer ALL Q	uestions		
		PART A - (10×1)	= 10 Marks)		
1.	What is the order of con	nvergence of Newton-Ra	aphson method		CO1-R
	(a) 0	(b) 1	(c) 2	(d) 3	
2.	If the eigen values of A	are -4, 3, 1 then the dor	minant eigen value of A is		CO1-R
	(a) -4	(b) 3	(c) 1	(d) 0	
3.	Newton's forward inter	polation formula used or	nly for intervals		CO2-R
	(a) unequal	(b) equal	(c) both	(d) Nor	ne
4.	The parabola which pas	sses through the points (0, 0), (1, 1), and (2, 20)		CO2-R
	(a) $8x^2 - 9x$	(b) $9x^2 - 8x$	(c) $3x^2 - 2x$	(d) $2x^2$	-3x
5.	What is the restriction of	on the number of interva	ls for Simpson's 1/3 rule?		CO3-R
	(a) Odd number	(b) Even number	(c) multiple of 3	(d) any	
6.	Gaussian three point for	rmula is exact for polyno	omials upto degree		CO3-R
	(a) 1	(b) 3	(c) 5	(d) 6	
7.	From the following whi	ich one is single step me	thod		CO4-R
	(a) Milne's	(b) Taylor	(c) Adam Bashforth	(d) Nor	ne
8.	How many prior value method	s are required to predic	t the next value in Adam's		CO4-R
	(a) 2	(b) 3	(c) 4	(d) 5	

9.	A partial differential equation is classified as a Parabolic if B^2 -4AC							(CO5-R	
	(a) <	< 0	(b) =	0		(c) > 0		(d) None	e	
10.		at type of ed nula.	quations can be	ons can be solved by Crank-N		Nickolson's differe	nce	(CO5-R	
	(a) I	Parabolic	(b) E	llipti	ic	(c) Hyperbolic		(d) None	e	
]	PAR	$T - B (5 \times 2 =$	10Marks)				
11.	Finc	d the iterative	ve formula to f	ind -	\sqrt{N} where N	s a positive number		(CO1-R	
12.	Forr	n the Newt	on's divided d	iffere	ence table for	the following data		(CO2-R	
		x y	5 15 22 7 36 160							
13.	App	oly two poin	nt formula to ev	valua	ate $\int_{-1}^{1} \frac{dx}{1+x^2}$.			(CO3-R	
14.						$m y' = y - \frac{2x}{y}, y(0) =$	1.	(CO4-R	
15.	Wri	te the differ	ence scheme f	or so	olving the Lap	lace equation.		CO5-R		
				PA	ART – C (5 x 1	6= 80Marks)				
16.	(a)	(i) By Nev	wton- Raphson	met	thod find a nor	a zero root of $x^2 + 4\sin^2\theta$	1 x = 0.	CO1-Ana	(8)	
		` '	the system of 6 = 3; $2x + 3y + 3$	3z = 1	-	s elimination method = 13	d	CO1-Ana	(8)	
	(b)	x + 3y + 52		27 y -		ollowing system. $x - 2y + 3z = 65.46$		CO1-App	(8)	
		(ii) Determ	nine the larges the Matrix $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$	t eige	- 1 \rightarrow 4 by powe	he corresponding ei r method	gen	CO1-Ana	(8)	

17. (a) (i) Using Newtons divided difference formula find u (3) given

u(1) = -26, u(2) = 12, u(4) = 256 and u(6) = 844.

CO2-App

(8)

(ii) From the following table find the value of tan45 °15 by CO2-Ana (8) Newton's forward Interpolation formula.

x°	45	46	47	48	49	50
tan x°	1	1.03553	1.07237	1.11061	1.15037	1.19175

Or

(b) Obtain the cubic Spline approximation for the function y = f(x) CO2-U from the following data given that $y_0 = y_3 = 0$.

X	-1	0	1	2
У	-1	1	3	35

18. (a) (i) Compute f'(0) and f''(4) from the data.

CO3-Ana (8)

X	0	1	2	3	4
y	1	2.718	7.381	20.086	54.598

(ii) Find $\int_{1.6}^{2.8} f(x) dx$ by Simpsons $(1/3)^{rd}$ rule from the CO3-App (8) following table.

X	1.6	1.8	2.0	2.2	2.4	2.6	2.8
f(x)	4.95	6.05	7.39	9.02	11.02	13.46	16.4
							4

Or

(b) (i) Evaluate $\int_{0}^{2} \frac{x^{2} + 2x + 1}{1 + (x + 1)^{4}} dx$ by Gaussian three point formula

CO3-Ana (8)

(ii) Evaluate $\int_{0}^{1} \int_{0}^{1} e^{x+y} dxdy$ using trapezoidal rule and Simpson's rule.

 $CO3-U \qquad (8)$

19. (a) (i) Find by Taylor's series method, the values of y at x = 0.1 and CO4-U (8) $x = 0.2 \text{ to four decimal places from } \frac{dy}{dx} = x^2 y - 1, y(0) = 1$

(ii) Using Modified Euler's methods find

CO4-App (8)

$$y(0.2)$$
 if $\frac{dy}{dx} = y - x^2 + 1, y(0) = 0.5$

Or

- (b) Apply Runge-Kutta method of fourth order to find approximate CO4-Ana (16) values of y for x = 0.2, 0.4 and 0.6 if $\frac{dy}{dx} = x^3 + y$, y(0) = 2. Hence find y(0.8) by Milne's predictor- corrector method.
- 20. (a) Solve CO5-App (16)

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \text{, subject to}$$

- (i) u(0,y) = 0, $0 \le y \le 4$
- (ii) u(4,y) = 12 + y, $0 \le y \le 4$
- (iii) $u(x,0) = 3x, 0 \le x \le 4$
- (iv) $u(x,4) = x^2$, $0 \le x \le 4$ by dividing the square into 16 square meshes of side 1.

Or

(b) Solve the Poisson equation $\nabla^2 u = -10(x^2 + y^2 + 10)$, CO5-U (16) $0 \le x \le 3$; $0 \le y \le 3$; u = 0 on the boundary.