A		Reg. No. :											
	Question Paper Code: 93904												
	B.E./B.Tech. DEGREE EXAMINATION, DEC 2021												
	Third Semester												
	Chemical Engineering												
	19UCH305- CHEMICAL PROCESS CALCULATIONS												
		(Regul	ation	2019)								
Dura	Duration: Three hours Maximum: 100 Marks												
		Answer A	LL Q	uesti	ons								
		PART A - (10	0 x 1 =	= 10]	Mai	rks)							
1.	1. A cylinder contains 8 gms of He, 40 gms of Ne and 80 gms of Ar. (Molecular weights of the components are 4, 20 and 40 respectively) How many moles of He are there in the cylinder?									CO	2- AP		
	(a) 1	(b) 2			(c)	4			(d) 6			
2.	Which of the following term does not involve in ideal gas law?										С	01 - U	
	(a) Pressure	(b) Volume.		(c) Te	emp	eratu	ire		(d)) Tim	e		
3.	Concept of material ba	lance based upon?	1? CO						01 - U				
	(a) Conservation of mass (b) ((b) Conservation of energy							
	(c) Conservation of mo	omentum	(d) Conservation of Volume										
4. A is one in which material enters and leaves the system CC without interruption.							01 - U						
	(a) Continuous process	3		(b) B	atc	h pro	cess						
	(c) Semi-batch process	3		(d) N	lone	e of t	he me	entio	ned				
5. In humidification the gas is in the liquid for the mass transfer to take part.					fer			CO3	- Ana				
	(a) Soluble	(b) Insoluble		(c) Pa	rtia	lly so	oluble	e	(d)) Iner	t		
6.	During humidification	process the dry bulb t	emper	ature				-				CO2	- App
	(a) increases	(b) decreases	(c) tend	s to	zero)			(d) re	emai	ns the	e same

/. Change in the internal energy for a steady-state system is alway	7.	Change	in	the	internal	energy	for	а	steady-state	system	is	always
---	----	--------	----	-----	----------	--------	-----	---	--------------	--------	----	--------

CO1- R

		· · · · · · · · · · · · · · · · · · ·							
	(a)	a) Positive (b) Negative (c) Zero (d) None of		of the menti	of the mentioned				
8.	Hea wha	at of formations of at is the heat of reac	A, B, C, and D, are 5 etion A + 4B -> 3C + I	J, 10 J, 15 J, and 20 D?	J respectively	', C	O3- Ana		
	(a)	10 J	(b) 20 J	(c) 35 J	(d)	45 J			
9.	In p the	presence of which g form of heat?	as is the fuel burnt to	generate energy in			CO1- U		
	(a)	Oxygen	(b) Hydrogen	(c) Methane	(d)	Nitrogen			
10.	The	e process of burning	g fuels in the presence	of oxygen is called			CO1- R		
	(a)	Induction	(b) Ignition	(c) Condensati	ion (d)	Combustic	on		
			PART – B (S	5 x 2= 10 Marks)					
11.	2 lita H ₂ Se	res of NH, at 303 k O ₄ ,. Find the norma	K (30°C) and 20.265 k lity of the acid	kPa is neutralised by	135 ml of solu	ition of	СО4- Е		
12.	What is the purpose of doing mass balance for a chemical process? CO1- R								
13.	State the term humidification. CO1- R								
14.	Writ	e the procedure for	doing energy balance	for a process			CO1- R		
15.	Wha	t are the three types	s of fuels available?				CO1- R		
			PART – C	(5 x 16= 80 Marks)				
16.	(a)	A gaseous mixture $CO_2 = 8\%$, $CO = 1$ molecular weight 303 K (30°C) and	has the following co $14, O_2 = 6\%, H_2O = 1^{\circ}$ of the gas mixture and 101.325 kPa.	mposition by volume $\% N_2 = 66\%$ Calculat d (ii) Density of the g	e : $CH_4 = 1 \%$ te (i) Average gas mixture at	CO2- Apj	p (16)		
			Or						
	(b)	The analysis of the 66% , $CO2 = 30\%$ the gas and (b) d (30° C).	e gas sample is given , NH3 = 4% %Find (a ensity of the gas at 2	a below (on volume t a) the average molecu 202.65 kPa g pressur	(1200) (CH ₄ - 1) (1200) (CO3- Ana	a (16)		
17.	(a)	An evaporator is f 15% NaOH and re is precipitated as c 45% NaOH, 2% evaporated, (b) kg	Ted with 15000 kg/h o est water. In the operatorystals. The thick liques NaCl and rest w /h salt precipitated, (c	f a solution containin tion, water is evapora for leaving the evaporater. Calculate: (a)) kg/h thick liquor.	ng 10% NaCl, tted and NaCl rator contains kg/h water	CO2- Apj	p (16)		

2

- (b) Ethylene oxide is produced by oxidation of ethylene. 100 kmol of CO2- App (16) ethylene are fed to a reactor and the product is found to contain 80 kmol ethylene oxide and 10 kmol CO2. Calculate: (a) the percent conversion of ethylene and (b) the percent yield of ethylene oxide
- 18. (a) The dry bulb temperature and dew point of ambient air were found to be CO2- App (16) 302 K (29°C) and 291 K (18°C) respectively. Barometer reads 100 kPa. Calculate: (a) the absolute molal humidity, (b) the absolute humidity, (c) the % RH, (d) the % saturation, (e) the humid heat and (f) the humid volume.

Data: Vapour pressure of water at 291 K = 2.0624 kPa.

Vapour pressure of water at 302 K = 4.004 kPa.

Or

- (b) The DB and WB temperatures on a particular day in Madurai are CO3- Ana (16) observed to be 308 K (35°C) and 299 K (26°C) respectively. Using the psychrometric chart, Find: (a) the absolute humidity (H), (b) % RH, (c) DP..
- 19. (a) Flue gases leaving the boiler stack at 523 K (250°C) have the following CO2- App (16) composition : $CO_2 = 11.31\%$, $H_2O = 13.04\%$, $O_2 = 2.17\%$ and $N_2 = 73.48\%$ (by volume) Calculate the heat lost in 1 kmol of gas mixture above 298 K (25°C), using the heat capacity data given below: $Cn = a + bT + cT2 + dT^3 k I/(kmol K)$

Cp – a +01	$\pm c_1 z \pm a_1$, KJ/(KIIIOI.K)	

Gas	a	b x 10 ³	c x 10 ⁶	d x 10 ⁹			
H ₂ O	21.3655	64.2841	- 41.0506	9.7999			
O ₂	26.0257	11.7551	- 2.3426	- 0.5623			
CO ₂	32.4921	0.0796	13.2107	-4.5474			
N ₂	29.5909	- 5.141	13.1829	-4.968			
Or							

(b) A stream flowing at a rate of 10000 mol/h containing 25 mole % N2 and

CO4- E (16)

75 mole % H, is to be heated from 323 K (50°C) to 493 K (220°C). Calculate the heat that must be transferred using Cp data given below: $Cp = a + bT + cT^2 + dT^3$, kJ/(kmol-K)

Gas	a	b x 10 ³	c x 10 ⁶	d x 10 ⁹
N ₂	29.5909	- 5.41	13.1829	-4.968
H ₂	28.6105	1.0194	-0.1476	0.769

- 20. (a) The ultimate analysis of coal sample is given below: Carbon : 61.5%, CO2- App (16) hydrogen : 3.5%, sulphur : 0.4%, ash : 14.2%, nitrogen : 1.8% and rest oxygen. Calculate :
 - (a) Theoretical oxygen requirement per unit weight of coal.
 - (b) Theoretical dry air requirement per unit weight of coal, and
 - (c) The Orsat analysis of flue gases when coal is burned with 90% excess dry air.

Or

(b) The GHV (gross heating value) of gaseous n-butane is 2877.40 kJ/mol at CO2- App (16) 298 K (25°C).
Calculate its NHV (net heating value) in kJ/mol and kJ/kg. = 2442.5 kJ/kg. Latent heat of water vapour at 298 K (25°C)