A	Reg. N	No.:			
	Question	Paper Code: 57903			
	B.E./B.Tech. DEG	REE EXAMINATION, DEC 2021			
	S	eventh Semester			
	Che	emical Engineering			
	15UCH703 – CHEMIC	CAL REACTION ENGINEERING - II			
	(]	Regulation 2015)			
Dur	ration: Three hours	Maximum: 100 M	Mark		
	Ans	wer ALL Questions			
	PART A	A - $(10 \text{ x } 1 = 10 \text{ Marks})$			
1.	The surface area of γ alumina can b	e in the range of	COI		
	(a) $1 - 10 \text{ m}^2/\text{gm}$	(b) $50 - 100 \text{ m}^2/\text{gm}$			
	(c) $100 - 300 \text{ m}^2/\text{gm}$	(d) $500 - 1000 \text{m}^2/\text{gm}$			
2.	BET apparatus	,	COI		
	(a) Measures the catalyst surface area directly				
	(b) Operates at very high temperature. (more than boiling point of water)				
	(c) Uses water as adsorbate				
	(d) None of the above				
3.	Adsorption data are frequently repo	rted by	CO2		
	(a) Adsorption isotherms	(b) Catalyst deactivation			
	(c) Sigmoidal curve	(d) none of the above			
4.	Adsorption term in rate equation of heterogeneous catalytic reaction does not contains partial pressure of		CO2		
	(a) Adsorbed inert	(b) Un absorbed reactant			
	(c) Dissociated adsorbate	(d) Adsorbed product			
5.	A temperature gradient exist in		CO3		
	(a) Within the pellet	(b) Across the fluid film			
	(c) Both (a) & (b)	(d) None of the above			

6.	Thiele Modulus is defined as						
	(a) Surface reaction rate /convective mass transfer rate						
	(b) Surface reaction rate/ diffusion rate						
	(c) Convective mass transfer rate/ surface reaction rate.						
	(d) Diffusion rate / surface reaction rate						
7.	Find the time required for complete burning of graphite particle CO4-1 when chemical reaction controls with the following data ρ_B = 0.183 mol/cm ³ , R=0.5 cm, b=1, k=20 cm/s and C _{Ag} = 8.31*10^-7.						
	(a) 5505.4 sec	(b) 4000.6sec					
	(c) 100.8 sec	(d) none of the above					
8.	In the heterogeneous non-catalytic reaction, if the chemical reaction is rate CO4-App controlling step what is the time need for complete conversion for 10 mm particle.(time need for complete conversion of 5 mm particle is 5 minutes)						
	(a) 10 minutes (b) 25 minutes	(c) 50 minutes	(d) 5 minute				
9.	SO ₂ can be absorbed in absorbers using	as solvent		CO5- R			
	(a) Dimethyl aniline (b) NaOH	(c) Na_2CO_3	(d) K_2CO_3				
10.	If $M_{\rm H}$ > 2, reaction occurs in the			CO5- R			
	(a) Gas film	(b) Liquid film					
	(c) Main body of liquid	(d) Main body of gas					
PART - B (5 x 2 = 10 Marks)							
11.	Why adsorption takes place on solid surface?						
12.	What are heterogeneous reactions?						
13.	Define effectiveness factor						
14.	Plot the conversion vs. time curve for different controlling regime in non- CO4- R catalytic heterogeneous catalytic reaction						
15.	Define Hatta number.						
PART – C (5 x 16= 80 Marks)							
16.	(a) Explain in detail the assumptions Method	and steps followed in B.	IH CO1-U	(16)			
Or							
	(b) Discuss in detail about the pore analysis	sis conducted on catalysts.	CO1-U	(16)			
17.	(a) Discuss in detail about surface reaction	n in a heterogeneous reaction	on. CO2-U	(16)			

- Or
- (b) Discuss in detail about the molecular (or) non dissociated CO2-U (16) adsorption.
- 18. (a) Demonstrate expressions for internal diffusion that takes place in a CO3-U (16) single cylindrical pore with first order reactions.

Or

- (b) Derive the performance equations for reactors containing porous CO3-U (16) catalysts.
- 19. (a) Discuss in detail on shrinking core model and derive expression for CO4-U (16) diffusion through ash layer.

Or

- (b) Discuss in detail on Shrinking core model and derive expression for CO4-U (16) diffusion through gas film
- 20. (a) Explain in detail about film theory, penetration theory and surface CO5-U (16) renewal theories.

Or

(b) Discuss in detail the design considerations of various types of gas- CO5-U (16) liquid reactors.