A		Reg. No. :						
Question Paper Code: 57901								
B.E./B.Tech. DEGREE EXAMINATION, DEC 2021								
Seventh Semester								
Chemical Engineering								
15UCH701 - TRANSPORT PHENOMENA								
(Regulation 2015)								
Dur	ation: Three hours			Maximum: 100 Marks				
Answer ALL Questions								
PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$								
1.	Tooth paste is an example	e of		CO1- R				
	(a) Newtonian fluid (b) Dilatant	(c) Bingham	(d) Pseudo plastic				
2.	Power law model is also	called as		CO1- R				
	(a) Bingham model		(b) Oswald-d	(b) Oswald-de Waale model				
	(c) Eyring model		(d) The Ellis	(d) The Ellis model				
3.	$DV\rho/\mu$ is called			CO2- R				
	(a) Grashoff number (b) pradntl number	(c) Reynolds	number (d) Nusselt Number				
4.	For laminar flow Reynolds number is CO2							
	(a) $N_{Re} = 2100$ (b)) $N_{Re} < 2100$	(c) $N_{Re} > 210$	0 (d) $N_{Re} > 4000$				
5.	Sun is the finest example	of		CO3- R				
	(a) Convection		(b) heat flux					
	(c) radiation		(d) Fission.					
6.	The ratio of driving force	and resistance is	called	cO3- R				
	(a) Force (b) Flux	(c) shear stre	ss (d) shear rate				
7.	What is the unit of diffusi	ion coefficient?		CO4- R				
	(a) m^2 . (b)) s	(c) $m^2 s$.	(d) m^2/s .				
8.	Diffusion of components	between the phas	es at equilibrium	is CO4- R				
	(a) Zero (b) Infinit	y (c) Chang	es continuously	(d) Diffusion never occurs				

9.	Consider the above problem, estimate the value of Reynolds numbered	CO	D5- R				
	(a) 0.12 (b) 0.13 (c) 0.14	(d) 0.15	(d) 0.15				
10.	The fundamental law used for momentum transfer is	CO	05 - R				
	(a) Fourier's law (b) Fick's law (c) Newtons's law (d) Ery	ng model					
PART - B (5 x 2= 10 Marks)							
11.	What is the importance of Transport Phenomena?	CO	CO1- U				
12.	What is No slip condition?						
13.	Define Conduction.	CO	CO3- U				
14.	Define Fick's law of diffusion	CO	CO4- U				
15.	State the Reynold's analogy.	CO	CO5- R				
PART – C (5 x 16= 80 Marks)							
16.	 (a) Discuss the theories of of viscosity of gases and liquids in respect effect of temperature and pressure. Or 	of CO1-App	(16)				
	(b) Write a detail note on rheological models	CO1- U	(16)				
17.	(a) Derive Navier-Stokes equation by equation of motion. Or	CO2- App	(16)				
	(b) Find the equation for an average velocity of an incompressible find flowing in an annular region in two co-axial circular cyline Assume that the flow is laminar.		(16)				
18.	 (a) Calculate the heat loss per m² of surface area for an insulating we composed of 25.4 mm thick fibre insulating board, where the instatemperature is 352.7 K and the outside temperature is 297.1 K. thermal conductivity of fibre is 0.0048 W/m.K Or 	side	(16)				
	(b) A thick walled cylindrical tubing of hard rubber having an instradius of 5mm and outside radius of 20 mm is being used temporary cooling coil in a bath. Ice water is flowing rapidly instand the inside wall temperature is 274.9 K. The outside surface temperature is 297.1 K. A total of 14.65 W. heat must be remore from the bath by the cooling coil. How many m of tubing	as ide, îace ved	(16)				

needed? The thermal conductivity is 0.151W/m.K

19. (a) The O_2 (a) is diffusing through CO(B) under standard conditions CO4- App (16) with CO non diffusing. The total pressure is 1 x 10⁵ N/m² and temperature is 0°c. The partial pressure of O_2 at two planes, 2.0 mm apart is 1300 and 6500 N/m2. The diffusivity of oxygen in CO is $D_{AB} = 1.87 \times 10^{-5} \text{m}^2/\text{sec.}$ Calculate the rate of diffusion of O_2 in kmole/m².sec.

Or

- (b) The solute HCl (A) is diffusing through a thin film of water (B) 2.0 CO4- App (16) mm thick at 283^{0} K. The concentration of HCl at point (1) at one boundary of the film is 12 wt. % HCl ($\rho 1 = 1061 \text{ kg/m}^{3}$) and the other boundary at point (2) is 6 wt % HCl ($\rho 2=1030 \text{ kg/m}^{3}$). The diffusion co. efficient of HCl in water is 2.5 x 10 ⁻⁹ m2/sec. Assuming steady state conditions prevail and the boundary is impermeable to water, calculate the flux of HCl in Kmole/m².sec.
- 20. (a) Arrive the equation $W'_{A}=WL_{c}A_{o}\sqrt{4}D_{AB}$ $V_{max}/\pi L$ for forced CO5- App (16) convection in falling liquid film.

Or

(b) Explain in detail about diffusion in laminar falling film CO5- U (16)