A		Reg. No. :											
Question Paper Code: 95903													
B.E./B.Tech. DEGREE EXAMINATION, DEC 2021													
Fifth Semester													
Chemical Engineering													
19UCH503 - CHEMICAL KEACTION ENGINEERING I													
(Kegulation 2019)													
Dur	Answer ALL Questions Maximum: 100 Marks												
Allswei ALL Questions $PAPT A = (10 \times 1 = 10 \text{ Marks})$													
1	The rate const	ant for a first order reaction) A I -	- 10	Iviai	K5)						CC)1_ P
1.	(a) depends on unit of time)1- K			
	(a) uppends on unit of time												
	(b) has units of reciprocal time												
	(c) does not change on changing the concentration units												
	(d) all of the above.												
2.	A certain first order reaction is half completed in 23 minutes. The rate CO2- App constant for the reaction must be									App			
	(a) 0.03 s ⁻¹	(b) 0.030 min ⁻¹	(c) 0.0)30 ł	nr ⁻¹				(d) 0	0.110	min	-1
3.	For identical feed composition ,flow rate , conversion and for zero order CO1- R reactions the ratio of the volume of mixed reactor to the volume of PFR is)1- R				
	(a) 0	(b) 1	c)	< 1						(d) >	>1		
4.	For identical feed composition and flow rate, N plug flow reactors inCO1- Rseries with a total volume V gives the same conversion as a singleCO1- R							01- R					
	(a) plug flow rea	actor of volume V											
	(b) CSTR of volume V												
	(c) plug flow reactor of volume V/N												
	(d) plug flow rea	actor of volume NV											

5.	For any reaction the maximum attainable concentration of desired product in a plug flow reactor is							
	(a) always lower than	n that in a MFR	(b) always higher	than that in a MFI	R			
	(c) always same that	in a MFR	(d) None of the al	(d) None of the above				
6.	For the desired product the r_R/r_S when concentration of A are	naximize ntain the	CO3- Ana					
	(a) low respectively		(b) high and low	respectively				
	(c) high respectively		(d) low and high	(d) low and high respectively				
7.	Estimate equilibrium constant (k ₂) for a reaction with k ₁ =30.8, $\Delta H_R^o = -10938$ cal/mol, for T ₁ and T ₂ as 298 and 600 respectively							
	(a) 3.15*10 ⁻³	(b) 2.83*10 ⁻³	(c) $4.0*10^{-2}$	$(d)1.5*10^{-3}$				
8.	For an ideal gas, fuga	acity is equal to			CO1- R			
	(a) temperature	(b) pressure	(c) concentration	(d) none of th	e above			
9.	In which reactor distr reactor happens	the	CO1- R					
	(a) Batch reactor		(b) MFR					
	(c) Plug flow reactor		(d) all of th	(d) all of the above				
10.	The total area under E curve $\int E dt =$							
	(a) 0	(b) 2	(c) 1	(d) α				
		PART – B (S	5 x 2= 10 Marks)					
11.	Define rate of reaction							
12.	What are continuous reactors? Give examples.							
13.	Give the expression for overall fractional yield for N mixed flow reactors in series.							
14.	Define optimum temperature progression.							
15.	What is residence time distribution in a reactor?							
		PART – C	(5 x 16= 80 Marks)					
16.	(a) Discuss in deta analyze rate data	il about integral and a.	d differential method	l used to CO1-U	J (16)			

Or

- (b) Derive the performance equation for a constant volume batch CO1- U (16) reactor with a neat sketch.
- 17. (a) Explain in detail about the size comparison of MFR with PFR and CO1-U (16) derive expressions for first order reaction

Or

- (b) Reactant A with $C_{AO} = 26 \text{ mol/m}^3$ passes through four equal size CO2- App (16) mixed flow reactors in series ($\tau_{total} = 2 \text{ min}$) and reacts according to the reaction $A \rightarrow R$ when the steady state is reached the concentration of A is found to be11,5,2 and 1 mol/m³ respectively in the four reactors. For this reaction, find τ_{plug} as to reduce the concentration of A from $C_{AO}=26$ to $C_{AF}=1 \text{mol/m}^3$.
- 18. (a) Liquid reactant A decomposes as per the following reactions in CO2- App (16) parallel

A-→RA-→S(desired) A-→T

With $r_R = 1$, $r_S=2 C_A$ and $r_T = CA^2$ and $C_{AO} = 2$ in a feed. Determine the maximum concentration of desired product that can be obtained in a mixed flow reactor.

Or

(b) Substance A in a liquid reacts to form R and S according to the CO2- App (16) following reaction scheme:

A→R

 $A \rightarrow S$ with $r_R = k_1 C_A^2$ and $r_S = k_2 C_A$, a feed with $C_{AO} = 1.0$, $C_{RO}=0$ and $C_{SO}=0.30$ enters two mixed flow reactors in series ($\tau \ 1 = 2.5 \text{ min and } \tau \ 2=10 \text{ min}$).the composition of the exit stream from the first reactor is $C_{A1}=0.40$, $C_{R1}=0.20$ and $C_{S1}=0.70$.find the composition of the exit stream from the second reactor.

19. (a) Discuss in detail about the adiabatic operations and derive the CO1-U (16) expression for energy balance and represent it graphically.

(b) For the elementary liquid phase reaction A reversibly reacts with CO2- App (16)
R construct a plot of equilibrium conversion as a function of temperature and conversion when pure A at a

temperature of 27 $^{\rm O}$ C (300 K) is fed to the reactor.

Datas: $\Delta H_{fA} = -40000 \text{ cal/mol}$ $\Delta H_{fR} = -60000 \text{ cal/mol}$ $C_{PA} = 50 \text{ cal/(mol.k)}, C_{PR} = 50 \text{ cal/mol} .k$ K = 100000 at 298 K

20. (a) The following results were obtained for a pulse tracer test carried CO1-U (16) on a piece of reaction equipment.

The output concentration rose linearly from zero to 0.5 μ mol / dm³ in 5 min, then fell linearly to zero in 10 min (after reaching a maximum value of 0.5 μ mol / dm³).

- (i) Calculate the mean residence time.
- (ii) Calculate the total reactor volume if the flow rate is 570 1/min.

Or

(b) A reactor with a number of dividing baffles is to be used to carry CO5-U (16) out the reaction

 $A \rightarrow R$, $-r_A = 0.05C_A$, mol / (l.min)

The results of a pulse tracer test are given below:

t,min	0	10	20	3	40	50	60	70
С	35	38	40	40	39	37	36	35

How many tanks in series would you suggest to model the reactor / will represent this reactor?