Reg. No.:					

Question Paper Code:92007

B.E./B.Tech. DEGREE EXAMINATION, DEC 2021

Second Semester

19UMA207- Calculus, Complex Analysis and Transform Techniques

(Common to Agriculture, Biomedical, Biotechnology & Chemical Engineering)

(Regulation 2019)

Duration: Three hours Maximum: 100 Marks

PART A

10*2 = 20 Marks

(Answer Any Ten of the following questions)

1. Solve
$$(D^3 + D^2 + 4D + 4)y = 0$$

2. Calculate the Particular integral of
$$(D^2 - 1) y = x$$
 CO1- AP

3. Compute the Wronskian of
$$y_1, y_2$$
 of $y'' - 2y' + y = e^x \log x$ CO1- AP

- 4. Determine the constant 'a,b,c' so that the vector CO2-AP $\vec{F} = (axy + bz^3)\vec{i} + (3x^2 cz)\vec{j} + (3cz^2 y)\vec{k}$ is Irrotational.
- 5. Calculate the Directional derivative of $\varphi = 4xz^2 + x^2yzat$ CO2- AP (1,-2,-1) in the direction $2\vec{i} + 3\vec{j} + 4\vec{k}$

6. If
$$\varphi = \log (x^2 + y^2 + z^2)$$
 then Compute $\nabla \varphi$ at $(1, -1, 1)$

7. Examine the function
$$f(x) = e^{x} (\cos y + i \sin y)$$
 is analytic or not. CO3- AP

9 Calculate the fixed points of
$$w = \frac{z-1}{z+1}$$
.

Evaluate
$$\int_{C} \frac{z^{2}}{(z-1)^{2}(z+2)} dz$$
 where C is $|z| = 3$ using Cauchy's Integral formula.

Expand
$$\frac{1}{z-2}$$
 at $z=1$ in a Taylor's series.

- Calculate the residue of $f(z) = \frac{1 e^{-z}}{z^3}$ at z = 0.
- 13 State the conditions under which Laplace Transform of f(t) exists. CO6- U
- Evaluate $L^{-1} \left\lceil \log \left(\frac{s+1}{s-1} \right) \right\rceil$
- Verify the Initial value theorem for $f(t) = 1 e^{-at}$.

PART B
$$5*16 = 80 \text{ Marks}$$

(Answer Any FIVE of the following questions)

- 16. Solve $[(x+1)^2 D^2 + (x+1)D + 1]y = 4 \cos [\log (x+1)]$ CO1-App (16)
- Verify Gauss Divergence Theorem for $\vec{F} = 4xz \vec{i} y^2 \vec{j} + yz \vec{k}$ over the cube CO2-App (16) x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.
- Determine the bilinear transformation that maps the points 0, -1, i in the CO3- App (16) z-plane onto the points $i, 0, \infty$ in the w-plane.
- Using contour integration, Evaluate $\int_{0}^{2\pi} \frac{1}{13 + 5 \sin \theta} d\theta$ CO4- App (16)
- Find the Laplace transform of $f(t) = f(t) = \begin{cases} k, & 0 \le t \le a \\ -k, & a \le t \le 2a \end{cases}$ CO5- App (16)
- Solve $(D^2 + a^2)y = \tan ax$, using method of variation of parameters CO1-App (16)
- Prove that $\vec{F} = (y^2 \cos z + z^3) \vec{i} + (2y \sin x 4) \vec{j} + 3xz^2 \vec{k}$ is irrotational and CO1-App (16) also find its scalar potential.
- Solve by using convolution theorem $L^{-1}\left[\frac{s^2}{(s^2+a^2)(s^2+b^2)}\right]$ CO5- App (16)