Reg. No.:					

Question Paper Code: 94B04

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2021

Fourth Semester

Biomedical Engineering

19UBM404-PRINCIPLES OF SIGNALS AND SYSTEMS

(Regulation 2019)

Duration: 1:45hrsMaximum: 50 Marks

(CO4: Apply)

PART A - $(10 \times 2 = 20 \text{ Marks})$

	Answer any ten of the following questions	
1.	Give the graphical and mathematical representation of Unit step sequence and	l Unit ramp
	sequence.	(CO1: Understand)
2.	Differentiate continuous time signal and discrete time signals.	(CO1: Understand)
3.	Determine odd and even components of the signal $x(t)=e^{jt}$.	(CO1: Apply)
4.	Find the Laplace transform of $\cos \omega_0 t$ u(t) using property.	(CO2: Apply)
5.	State Dirichlets conditions.	(CO2: Understand)
6.	Determine the Fourier transform of sgn function.	(CO2: Apply)
7.	Check whether the causal system with transfer function $H(s)=1/(s-2)$ is stable	. (CO4: Apply)
8.	Write Nth order differential equation and its Laplace transform.	(CO3: Understand)
9.	Determine the response of the system with impulse response $h(t)=tu(t)$ for $=u(t)$.	the input signal x(t) (CO3: Apply)
10.	State the condition for existence of DTFT?	(CO2: Understand)
11.	Obtain inverse z-transform of $X(z)=1/(z-a)$, $ z > a $.	(CO4: Apply)
12.	Determine z-transform of the sequence $x[n]=\{1,2,3,4\}$.	(CO2: Apply)
13.	Give the relationship between impulse response and transfer function of DT-I	LTI system. (CO4: Understand)
14.	Determine the convolution of the two sequence $x[n]=\{1,1,1,\}$ and $h[n]=\{2,2\}$,

15.

Obtain convolution of x[n] and $\delta[n]$.

- 16. (a) For each of the following input-output relationship, check whether the corresponding system is linear, time invariant and causal. (CO1: Apply)
 - (a) $y(t)=t^2x(t-1)$ [5]
 - (b) $y[n]=x^2[n-2]$ [5]

Or

- (b) Determine whether the system y[n] = 2x(n-2) is memory less, causal, linear, time invariant, invertible and stable. Justify your answers.
- 17. (a) Prove convolution and multiplication properties of Laplace transform. (CO2: Understand)

Or

- (b) Obtain the Fourier co-efficient and write the quadrature form of a fully rectified sine wave. (CO2: Ana)
- 18. (a) A pressure gauge that can be modeled as an LTI system has a time response to a unit step input given by $(1-e^{-t}-te^{-t})u(t)$. For a certain input x(t), the output is observed to be $(2-3e^{-t}+e^{-3t})u(t)$. For this observed measurement, determine the true pressure input to gauge as a function of time. (CO4: Analyze)

Or

(b) An LTI system is represented by $\frac{d^2}{dt^2}y(t) + 4\frac{d}{dt}y(t) + 4y(t) = x(t)$ with initial condition y(0) = 0; y'(0) = 1; Find the output of the system, when the input is $x|t| = e^{-t}u(t)$.

(CO3:App)

19. (a) Consider a discrete time LTI system with impulse response

$$h[n] = \left(\frac{1}{2}\right)^n u[n]$$

Use Fourier transforms to determine the response to each of the following input signal

i)
$$x[n] = \left(\frac{3}{4}\right)^n u[n]$$
 (CO4: Analyze)
ii) $x[n] = (n+1)\left(\frac{1}{4}\right)^n u[n]$

(b) Find inverse z-transform of X(z) =
$$\frac{z^{-1}}{1 - 0.25 z^{-1} - 0.375 z^{-2}}$$
For ROC |z| > 0.75; ROC |z| < 0.5

20. (a) Consider an LTI system with impulse response

$$h[n] = \begin{cases} a^n & n \ge 0 \\ 0 & n < 0 \end{cases}$$

and input

$$x[n] = \begin{cases} 1 & 0 \le n \le N - 1 \\ 0 & otherwise \end{cases}$$

Determine the output y[n] by explicitly evaluating the discrete convolution of x[n] and h[n]. (CO5: Apply)

Or

(b) For a causal LTI system the input x(n) and output y(n) are related through a difference equation $y(n) - \frac{1}{6}y(n-1) - \frac{1}{6}y(n-2) = x(n)$. Determine the frequency response $H(e^{jw})$ and the impulse response h(n) of the system. (CO5: Apply)